Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 841
Filtrar
Más filtros

Publication year range
1.
Anal Chem ; 96(28): 11115-11120, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38949267

RESUMEN

Fluorescence detection has always suffered from high background fluorescence from real samples such as milk. Therefore, cumbersome pretreatments of samples were necessary to remove the fluorescent substances but led to long processing times and low efficiency. Time-resolved luminescence detection is a powerful technique for eliminating short-lived background fluorescence without additional pretreatments. However, the related instruments are usually equipped with high-speed excitation sources and detectors, which are always bulky and expensive. Herein, we developed a low-cost and miniaturized imaging system for high-throughput time-gated luminescence detection. An UV LED array was used to excite multiple samples, the luminescence of which could be detected by a smartphone simultaneously. An analog circuit was designed to synchronize the LED to the mechanical chopper to eliminate the background signals resulting from scattering and short-lived autofluorescence. Compared to other synchronous circuits based on FPGAs and microcontrollers, this analog circuit required no programming and memory. For the first time, high-throughput time-resolved luminescence detection of tetracycline in milk without any separation or enrichment was achieved by utilizing a smartphone as a camera, and the scattered signals and the background fluorescence were eliminated efficiently. The limit of detection reached as low as 53 nM (∼0.024 ppm), lower than the residue limit set by the European Union. This high-throughput time-gated luminescence detection method can be used for quantitative analysis of many real samples with high background fluorescence.


Asunto(s)
Mediciones Luminiscentes , Leche , Tetraciclina , Leche/química , Animales , Tetraciclina/análisis , Teléfono Inteligente , Fluorescencia , Límite de Detección , Factores de Tiempo , Luminiscencia , Miniaturización
2.
Anal Chem ; 96(18): 7073-7081, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663374

RESUMEN

A spatial-potential-color-resolved bipolar electrode electrochemiluminescence biosensor (BPE-ECL) using a CuMoOx electrocatalyst was constructed for the simultaneous detection and imaging of tetracycline (TET) and lincomycin (LIN). HOF-101 emitted peacock blue light under positive potential scanning, and CdSe quantum dots (QDs) emitted green light under negative potential scanning. CuMoOx could catalyze the electrochemical reduction of H2O2 to greatly increase the Faradic current of BPE and realize the ECL signal amplification. In channel 1, CuMoOx-Aptamer II (TET) probes were introduced into the BPE hole (left groove A) by the dual aptamer sandwich method of TET. During positive potential scanning, the polarity of BPE (left groove A) was negative, resulting in the electrochemical reduction of H2O2 catalyzed by CuMoOx, and the ECL signal of HOF-101 was enhanced for detecting TET. In channel 2, CuMoOx-Aptamer (LIN) probes were adsorbed on the MXene of the driving electrode (DVE) hole (left groove B) by hydrogen-bonding and metal-chelating interactions. LIN bound with its aptamers, causing CuMoOx to fall off. During negative potential scanning, the polarity of DVE (left groove B) was negative and the Faradic current decreased. The ECL signal of CdSe QDs was reduced for detecting LIN. Furthermore, a portable mobile phone imaging platform was built for the colorimetric (CL) detection of TET and LIN. Thus, the multiple mode-resolved detection of TET and LIN could be realized simultaneously with only one potential scan, which greatly improved detection accuracy and efficiency. This study opened a new technology of BPE-ECL sensor application and is expected to shine in microchips and point-of-care testing (POCT).


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Electrodos , Lincomicina , Mediciones Luminiscentes , Tetraciclina , Tetraciclina/análisis , Tetraciclina/química , Técnicas Biosensibles/métodos , Lincomicina/análisis , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Catálisis , Puntos Cuánticos/química , Compuestos de Cadmio/química , Aptámeros de Nucleótidos/química , Compuestos de Selenio/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Antibacterianos/análisis , Antibacterianos/química
3.
Small ; 20(27): e2309502, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38282176

RESUMEN

Accurate detection of trace tetracyclines (TCs) in complex matrices is of great significance for food and environmental safety monitoring. However, traditional recognition and amplification tools exhibit poor specificity and sensitivity. Herein, a novel dual-machine linkage nanodevice (DMLD) is proposed for the first time to achieve high-performance analysis of TC, with a padlock aptamer component as the initiation command center, nucleic acid-encoded multispike virus-like Au nanoparticles (nMVANs) as the signal indicator, and cascade walkers circuit as the processor. The existence of spike vertices and interspike nanogaps in MVANs enables intense electromagnetic near-field focusing, allowing distinct surface-enhanced Raman scattering (SERS) activity. Moreover, through the sequential activation between multistage walker catalytic circuits, the DLMD system converts the limited TC recognition into massive engineering assemblies of SERS probes guided by DNA amplicons, resulting in synergistic enhancement of bulk plasmonic hotspot entities. The continuously guaranteed target recognition and progressively promoted signal enhancement ensure highly specific amplification analysis of TC, with a detection limit as low as 7.94 × 10-16 g mL-1. Furthermore, the reliable recoveries in real samples confirm the practicability of the proposed sensing platform, highlighting the enormous potential of intelligent nanomachines for analyzing the trace hazards in the environment and food.


Asunto(s)
Oro , Nanopartículas del Metal , Espectrometría Raman , Oro/química , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Tetraciclina/análisis , Tetraciclina/química , Técnicas Biosensibles/métodos , Límite de Detección
4.
Methods ; 214: 1-7, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075873

RESUMEN

Increasing awareness of the health and environment impacts of the antibiotics misuse or overuse, such as tetracycline (TC) in treatment or prevention of infections and diseases, has driven the development of robust methods for their detection in biological, environmental and food systems. In this work, we report the development of a new europium(III) complex functionalized silica nanoprobe (SiNPs-Eu3+) for highly sensitive and selective detection of TC residue in aqueous solution and food samples (milk and meat). The nanoprobe is developed by immobilization of Eu3+ ion onto the surface of silica nanoparticles (SiNPs) as the emitter and TC recognition unit. The ß-diketone configuration of TC can further coordinate with Eu3+ steadily on the surface of nanoprobe, facilitating the absorption of light excitation for Eu3+ emitter activation and luminescence "off-on" response. The dose-dependent luminescence enhancement of SiNPs-Eu3+ nanoprobe exhibits good linearities, allowing the quantitative detection of TC. The SiNPs-Eu3+ nanoprobe shows high sensitivity and selectivity for TC detection in buffer solution. Time resolved luminescence analysis enables the elimination of autofluorescence and light scattering for highly sensitive detection of TC in milk and pork mince with high accuracy and precision. The successful development of SiNPs-Eu3+ nanoprobe is anticipated to provide a rapid, economic, and robust approach for TC detection in real world samples.


Asunto(s)
Europio , Luminiscencia , Europio/análisis , Europio/química , Dióxido de Silicio , Tetraciclina/análisis , Tetraciclina/química , Antibacterianos
5.
Environ Res ; 252(Pt 2): 118816, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570126

RESUMEN

The current investigation reports the usage of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN), the two recognized machine learning techniques in modelling tetracycline (TC) adsorption onto Cynometra ramiflora fruit biomass derived activated carbon (AC). Many characterization methods utilized, confirmed the porous structure of synthesized AC. ANN and ANFIS models utilized pH, dose, initial TC concentration, mixing speed, time duration, and temperature as input parameters, whereas TC removal percentage was designated as the output parameter. The optimized configuration for the ANN model was determined as 6-8-1, while the ANFIS model employed trimf input and linear output membership functions. The obtained results showed a strong correlation, indicated by high R2 values (ANNR2: 0.9939 & ANFISR2: 0.9906) and low RMSE values (ANNRMSE: 0.0393 & ANFISRMSE: 0.0503). Apart from traditional isotherms, the dataset was fitted to statistical physics models wherein, the double-layer with a single energy satisfactorily explained the physisorption mechanism of TC adsorption. The sorption energy was 21.06 kJ/mol, and the number of TC moieties bound per site (n) was found to be 0.42, conclusive of parallel binding of TC molecules to the adsorbent surface. The adsorption capacity at saturation (Qsat) was estimated to be 466.86 mg/g - appreciably more than previously reported values. These findings collectively demonstrate that the AC derived from C. ramiflora fruit holds great potential for efficient removal of TC from a given system, and machine learning approaches can effectively model the adsorption processes.


Asunto(s)
Biomasa , Carbón Orgánico , Aprendizaje Automático , Redes Neurales de la Computación , Tetraciclina , Adsorción , Tetraciclina/química , Tetraciclina/análisis , Carbón Orgánico/química , Frutas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis
6.
Luminescence ; 39(3): e4720, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38523056

RESUMEN

Developing effective means for detecting contamination in milk during production, processing, and storage is both important and challenging. Tetracycline (TC), due to its use in treating animal infections, is among the most prevalent organic pollutants in milk, posing potential and significant threats to human health. However, efficient and in situ monitoring of TC remains lacking. Nevertheless, we have successfully developed a highly sensitive and selective fluorescence method for detecting TC in milk using a metal-organic framework material made from Yb-TCPP (ytterbium-tetra(4-carboxyphenyl)porphyrin). The calculated Stern-Volmer constant (KSV) was 12,310.88 M-1, and the detection limit was 2.44 × 10-6 M, surpassing previous reports. Crucially, Yb-TCPP fluoresces in the near-infrared region, promising its development into a specific fluorescence detection product for practical TC detection in milk, offering potential application value.


Asunto(s)
Estructuras Metalorgánicas , Animales , Humanos , Leche/química , Fluorescencia , Tetraciclina/análisis , Antibacterianos/análisis
7.
Luminescence ; 39(7): e4828, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39004779

RESUMEN

The antibiotic tetracycline can be efficiently used as medicine for the deterrence of bacterial infections in humans, animals, and plants. However, the unprecedented use of tetracycline is of great concern owing to its low biodegradability, extensive usage, and adverse impacts on the environment and water quality. In this study, a sensitive spectrofluorometric method was proposed for the direct determination of tetracycline, based on biocompatible fluorescent carbon dots (CDs). The synthesis of CDs was performed by adopting a green hydrothermal procedure from carrot juice without requiring surface passivation or outflowing any environmentally hazardous waste. X-ray diffraction analysis and transmission electron microscopy revealed amorphous spherical-shaped CDs that exhibited blue emission under blue illumination. The fabricated fluorescent probe directly detected tetracycline in the concentration range of 4.00 × 10-6 to 1.55 × 10-5 mol L-1 with an LOD of 1.33 × 10-6 mol L-1. The performance of the probe was assessed in a tap water sample, with recovery values between 80.70 and 103.60%. The method's greenness was evaluated using the Analytical Green metric approach (AGREE) and confirmed to be within the green range. The developed method is facile, rapid, cost-effective, and offers a wide linear range and satisfactory selectivity, making it potentially suitable for determining tetracycline in water applications.


Asunto(s)
Antibacterianos , Carbono , Daucus carota , Colorantes Fluorescentes , Jugos de Frutas y Vegetales , Puntos Cuánticos , Espectrometría de Fluorescencia , Tetraciclina , Daucus carota/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Puntos Cuánticos/química , Carbono/química , Antibacterianos/análisis , Tetraciclina/análisis , Jugos de Frutas y Vegetales/análisis , Límite de Detección
8.
Mikrochim Acta ; 191(9): 531, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134877

RESUMEN

Tetracycline (TC) has been widely used in clinical medicine and animal growth promotion due to its broad-spectrum antibacterial properties and affordable prices. Unfortunately, the high toxicity and difficult degradation rate of TC molecules make them easy to accumulate in the environment, which breaks the ecological balance and seriously threatens human health. Rapid and accurate detection of TC residue levels is important for ensuring water quality and food safety. Recently, fluorescence detection technology of TC residues has developed rapidly. Lanthanide nanomaterials, based on the high luminescence properties of lanthanide ions and the high matching with TC energy levels, are favored in the real-time trace detection of TC due to their advantages of high sensitivity, rapidity, and high selectivity. Therefore, they are considered potential substitutes for traditional detection methods. This review summarizes the synthesis strategy, TC response mechanism, removal mechanism, and applications in intelligent sensing. Finally, the development of lanthanide nanomaterials for TC fluorescence detection and removal is reasonably summarized and prospected. This review provides a reference for the establishment of a method for the accurate determination of TC content in complex food matrices.


Asunto(s)
Colorantes Fluorescentes , Elementos de la Serie de los Lantanoides , Tetraciclina , Elementos de la Serie de los Lantanoides/química , Tetraciclina/análisis , Tetraciclina/química , Colorantes Fluorescentes/química , Nanoestructuras/química , Antibacterianos/análisis , Antibacterianos/química , Humanos , Espectrometría de Fluorescencia/métodos , Contaminación de Alimentos/análisis
9.
Mikrochim Acta ; 191(9): 519, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110252

RESUMEN

Functional materials with organic/inorganic composites as the main matrix and rare earth ion complexes as the guest have shown a very broad application prospect for antibiotic sensors. However, Eu3+-complex often relies on a single fluorescence response signal, which is susceptible to changes in the detection environment and cannot simultaneously detect and remove tetracycline (TC). Herein, green fluorescent covalent two-dimensional organic framework (COF-TD) is synthesized, followed by modification of Eu3+ to synthesize COF-TD@Eu3+. In the ratiometric sensor, Eu3+ serves as the recognition site and specific response probe for TC, while COF-TD is the fluorescence reference and carrier for Eu3+. Due to the antenna effect, TC enhances the red fluorescence of Eu3+, while the green fluorescence of COF-TD remains almost stable. Based on the change of fluorescence intensity and fluorescence color from green to red, the efficient ratiometric sensing can be finished in 1 min. The developed method shows high sensitivity with a detection limit of 0.3 µM and high selectivity to TC which makes the method applicable to detect TC in traditional Chinese medicine preparations. In addition, due to the high specific surface area of COFs and specific adsorption sites, COF-TD@Eu3+ also shows good performance for TC removal. The findings show that the maximum adsorption capacity is 137.3 mg g-1 and the adsorption equilibrium is reached in 30 min. Smartphone assisted COF-TD@Eu3+ for both ratiometric fluorescence detection and detecting the absorption of TC is proposed for the first time. The molecular cryptosteganography that transforms the selective response of COF-TD@Eu3+ to binary strings is anticipated to advance utilization of nanomaterials in logic sensing and information safety.


Asunto(s)
Europio , Colorantes Fluorescentes , Límite de Detección , Estructuras Metalorgánicas , Espectrometría de Fluorescencia , Tetraciclina , Europio/química , Estructuras Metalorgánicas/química , Tetraciclina/análisis , Tetraciclina/química , Adsorción , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Antibacterianos/análisis , Antibacterianos/química , Fluorescencia
10.
Mikrochim Acta ; 191(6): 344, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802523

RESUMEN

A molecularly imprinted electrochemiluminescent sensor is developed for the sensitive detection of tetracycline in environmental and food samples. The sensor uses an ionic liquid (i.e. [APMIM]Br) modified graphene-carbon nanotube composite (GMI) material as substrate, a double-layered core-shell metal-organic framework NH2-UiO-66@ZIF-8 (NUZ) loaded bipyridyl ruthenium (NUZ@Ru) as luminescent material, and a molecularly imprinted copolymer of o-phenylenediamine and hydroquinone as recognition element. The ionic liquid-modified graphene-carbon nanotube composite has a favorable three-dimensional structure, high specific surface area, and good hydrophilicity; the core-shell structured metal-organic framework has high stability and plentiful reaction sites for loading; the molecularly imprinted copolymer film has enhanced stability and recognition effect. Hence, the resulting sensor combines the merits of several materials and presents improved performance. Under the optimum detection conditions, it shows a wide linear range of 0.05 µM - 1 mM, a low detection limit of 20 nM, high selectivity, and excellent stability. It has been successfully applied to the detection of tetracycline in different samples.


Asunto(s)
Técnicas Electroquímicas , Límite de Detección , Mediciones Luminiscentes , Estructuras Metalorgánicas , Polímeros Impresos Molecularmente , Tetraciclina , Tetraciclina/análisis , Tetraciclina/química , Polímeros Impresos Molecularmente/química , Estructuras Metalorgánicas/química , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos , Grafito/química , Nanotubos de Carbono/química , Contaminación de Alimentos/análisis , Líquidos Iónicos/química , Antibacterianos/análisis , Antibacterianos/química , Contaminantes Químicos del Agua/análisis , Impresión Molecular
11.
J Environ Manage ; 363: 121328, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850916

RESUMEN

Antibiotics and organic residues from Tetracycline (TC) and other pharmaceuticals administered to aquatic living organism have negative impacts on aquatic environment by killing-off non-target living organisms and developing antibiotic-resistant bacteria. In this study, Micro-Nano Bubble (MNB) system was used to remove TC residues. MNB system demonstrated good level of degradation efficiency, as resulted in experiment where in time of 100 min, the TC degraded at rate of 82.66% from its initial concentration of TC when the initial concentration was 1 mg/L. When the initial concentration was increased to 10 mg/L, MNB system degraded TC at 64.35% of their initial, this means MNB system demonstrated good level of efficiency for TC removal and indicated that it is more efficient in TC degradation under the conditions of low initial TC concentration and high availability of dissolved oxygen (DO). In the system as the temperature increased there was a significant decrease in DO saturation which was related to the TC complex structure that contain multiple function groups such as amino groups, hydroxyl and carboxyl which possess high strong affinity with oxygen that leads to their adsorption onto bubble surface. This study provides significant insights into the application of MNB system for the removal of organic residues within aquatic ecosystem and underscores the need for further exploration of MNB technology for environmental remediation.


Asunto(s)
Tetraciclina , Tetraciclina/química , Tetraciclina/análisis , Contaminantes Químicos del Agua/química , Adsorción , Oxígeno/química , Antibacterianos/química
12.
Int J Environ Health Res ; 34(2): 1064-1075, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37004239

RESUMEN

Nowadays, incorrect apply of antibiotics to treat infections in honey has led to health risks for humans and antibiotic resistance. Current systematic review and meta-analysis conducted to study antibiotic residues in honey. Data were obtained through searching the databases, including Scopus, Web of Science, PubMed, and other internal databases. The pooled concentration of antibiotic residues was 5.032 (µg/kg) that ranged from 4.72 to 5.33 (µg/kg). The ranking of antibiotics concentration was found in order of fluoroquinolone (8.59 µg/kg) > tetracycline (5.68 µg/kg) > sulfonamides (5.54 µg/kg) > macrolides (4.19µg/kg), respectively. Liquid chromatography-mass spectrometry (LC-MS) method (37.9.7%), high-performance liquid chromatography (HPLC) method (34.4%), and enzyme-linked immunosorbent assay (ELISA) method (27.5.8%) were the most used methods in various studies. In order to avoid contamination, proper use of antibiotics, placement of hives at a suitable distance from agricultural environment, and regular control of antibiotic residues in honey seems to be necessary.


Asunto(s)
Antibacterianos , Miel , Humanos , Antibacterianos/análisis , Miel/análisis , Cromatografía Líquida de Alta Presión/métodos , Tetraciclina/análisis , Macrólidos , Contaminación de Alimentos/análisis
13.
Water Sci Technol ; 89(7): 1860-1878, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619908

RESUMEN

The activated persulfate (PS) process could produce sulfate radical (SO4·-) and rapidly degrade organic pollutants. The application of Fe3O4 as a promising PS activator was limited due to the rapid conversion of Fe2+ to Fe3+ on its surface. Mo4+ on MoS2 surface could be used as a reducing site to convert Fe3+ to Fe2+, but the separation and recovery of MoS2 was complex. In this study, MoS2/Fe3O4 was prepared to accelerate the Fe3+/Fe2+ cycle on Fe3O4 surface and achieved efficient separation of MoS2. The results showed that MoS2/Fe3O4 was more effective for PS activation compared to Fe3O4 or MoS2, with a removal efficiency of 91.8% for 20 mg·L-1 tetracycline (TC) solution under the optimal conditions. Fe2+ and Mo4+ on MoS2/Fe3O4 surface acted as active sites for PS activation with the generation of SO4•-, •OH, •O2-, and 1O2. Mo4+ acted as an electron donor to promote the Fe3+/Fe2+ cycling and thus improved the PS activation capability of MoS2/Fe3O4. The degradation pathways of TC were inferred as hydroxylation, ketylation of dimethylamino group and C-N bond breaking. This study provided a promising activated persulfate-based advanced oxidation process for the efficient degradation of TC by employing MoS2/Fe3O4 as an effective activator.


Asunto(s)
Molibdeno , Contaminantes Químicos del Agua , Tetraciclina/análisis , Oxidación-Reducción , Antibacterianos , Fenómenos Magnéticos , Contaminantes Químicos del Agua/química
14.
Anal Chem ; 95(46): 17108-17116, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37948569

RESUMEN

Pursuing a more efficient signal amplification strategy is highly demanded for improving the performance of the promising cathodic photoelectrochemical (PEC) sensors. In this work, we present an extremely effective dual signal amplification strategy by the integration of a Z-scheme nanohybrids-based photocathode with the effective signal modulation of an organic photoelectrochemical transistor (OPECT) device. Specifically, photocathodic gate material of CdTe-BiOBr nanohybrids with a Z-scheme electron-transfer route was designed and synthesized for preliminary improvement of the activity of the photogate; afterward, signal modulation of the OPECT system by the photocathodic gate of CdTe-BiOBr was then accomplished for further signal amplification by 2 orders of magnitude. As a result, the output PEC signal of CdTe-BiOBr was enhanced by 17.5-fold as compared to BiOBr, and the channel current (IDS) of the OPECT device was 117-fold magnified than its gate current (IG) response. Exemplified by tetracycline (TC) as a model target and aptamer as the specific recognition element, a versatile cathodic aptasensing platform was constructed based on the proposed OPECT device. The introduced OPECT aptasensor merits advantages, including a good linear range (1.0 × 10-12 to 1.0 × 10-6 M), a low limit of detection (4.2 × 10-13 M), and superior sensitivity than the traditional PEC methods for TC detection, which represents a universal protocol for developing the innovative photocathodic OPECT sensing platform toward accurate analysis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Telurio , Tetraciclina/análisis , Antibacterianos/análisis
15.
Environ Res ; 235: 116642, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37442259

RESUMEN

Nitrogen-doped graphene (NG) was synthesized via direct thermal annealing treatment. The obtained NG showed outstanding removal ability for tetracycline (TC) ascribed to enhanced adsorption and persulfate activation. The maximum TC adsorption capacity calculated from the Langmuir model of NG was 227.3 mg/g, which was 1.66 times larger than nitrogen-free graphene. The coexistence of NG and persulfate (PS) exhibited complete degradation of TC within 120 min attributed to the successful modification of nitrogen. Further analysis demonstrated that non-radical electron transfer was the dominant degradation pathway, which was different from the widely acknowledgeable radical mechanism. An electron donor-mediator-acceptor system was introduced, in which TC, NG, and PS performed as electron donor, mediator, and acceptor, respectively. The potential intermediates in the TC degradation process were detected and toxicity assessment was also performed. In addition, more than 75.8% of total organic carbon was removed, and excellent reusability was manifested in multiple adsorption and degradation experiments.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Adsorción , Nitrógeno , Antibacterianos , Tetraciclina/análisis , Oxidantes , Contaminantes Químicos del Agua/análisis
16.
Ecotoxicol Environ Saf ; 259: 115025, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216861

RESUMEN

In this paper, water and sediments were sampled at eight monitoring stations in the coastal areas of the Yangtze River Estuary in summer and autumn 2021. Two sulfonamide resistance genes (sul1 and sul2), six tetracycline resistance genes (tetM, tetC, tetX, tetA, tetO, and tetQ), one integrase gene (intI1), 16 S rRNA genes, and microbial communities were examined and analyzed. Most resistance genes showed relatively higher abundance in summer and lower abundance in autumn. One-way analysis of variance (ANOVA) showed significant seasonal variation of some ARGs (7 ARGs in water and 6 ARGs in sediment). River runoff and WWTPs are proven to be the major sources of resistance genes along the Yangtze River Estuary. Significant and positive correlations between intI1 and other ARGs were found in water samples (P < 0.05), implying that intI1 may influence the spread and propagation of resistance genes in aquatic environments. Proteobacteria was the dominant phylum along the Yangtze River Estuary, with an average proportion of 41.7%. Redundancy analysis indicated that the ARGs were greatly affected by temperature, dissolved oxygen, and pH in estuarine environments. Network analysis showed that Proteobacteria and Cyanobacteria were the potential host phyla for ARGs in the coastal areas of the Yangtze River Estuary.


Asunto(s)
Estuarios , Microbiota , Resistencia a la Tetraciclina/genética , Ríos/microbiología , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Antibacterianos/análisis , Tetraciclina/análisis , Sulfanilamida , Sulfonamidas/análisis , Agua/análisis , Microbiota/genética , China , Monitoreo del Ambiente
17.
Mikrochim Acta ; 190(12): 463, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37945941

RESUMEN

A carbon dot (CD) was prepared by using tryptophan as a single carbon source and demonstrated its good selective fluorescence quenching effect on tetracycline (TC). The modified metal-organic frameworks (MOF) NH2-MIL-101 was chosen as matrix, doped with CD, molecularly imprinted polymer (MIP) prepared with TC as the template, and finally CD-MOF-MIP complexes (CD@MIP) was synthesized. For comparison, MIP were also prepared without CD as well as non-imprinted polymers and their ability was tested, respectively. CD@MIP is a nanomaterial with bright fluorescence under the irradiation of ordinary UV equipment (λ = 360 nm), which has a fast and stable fluorescence quenching for TC and a good linear relationship for TC in the concentration range 0-400 µmol L-1. The quantum yield of CD@MIP was 12.75% and the 3σ limit of detection (LOD) for CD@MIP was 0.59 µmol L-1. The maximum adsorption capacity of CD@MIP reached 304.6 mg g-1 and the adsorption equilibrium was reached after about 75 min. The adsorption of CD@MIP to tetracycline spiked in milk samples reached 90.0 mg g-1 within 2 h, which was much higher than that of NIP (48.4 mg g-1) under the same conditions, as demonstrated by high performance liquid chromatography (HPLC). The results obtained showed that CD@MIP combined the high adsorption capacity of MOF, the specific adsorption of molecular imprinting and the fluorescence properties of CD, can determine and rapidly removeTC in the environment.


Asunto(s)
Estructuras Metalorgánicas , Impresión Molecular , Adsorción , Carbono/química , Tetraciclina/análisis , Antibacterianos , Impresión Molecular/métodos , Polímeros Impresos Molecularmente
18.
Mikrochim Acta ; 190(2): 66, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692590

RESUMEN

Blue fluorescent carbon dots (PCDs) were prepared by hydrothermal method with Partridge tea. The ethanol extract of Partridge tea (PEE) was found to emit red fluorescence. Thus, a novel ratiometric sensor was constructed by simply mixing the two fluorophores derived from Partridge tea. The presence of tetracycline (TET) at lower concentrations enhanced the emission peak at 508 nm of PCDs and had a negligible effect on the emission peak at 680 nm of PEE. TET at higher concentrations led to  quenching  both the fluorescence of PCDs and PEE via inner filter effect and fluorescence resonance energy transfer, separately. Good linearities for the detection of TET were obtained in the ranges 0.67 to 15.00 µM and 33.33 to 266.67 µM, with limit of detection of 0.095 µM. The sensor was successfully applied to detect TET in lake water and milk samples with good recoveries ranging from 93.27 ± 4.04% to 107.30 ± 6.16%. This study provided a simple, selective, sensitive, rapid, and environmentally friendly method of monitoring TET residues in the environment and food.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/química , Límite de Detección , Tetraciclina/análisis , Antibacterianos/análisis ,
19.
Anal Chem ; 94(16): 6206-6215, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35427127

RESUMEN

The presence of antibiotics and their metabolites in milk and dairy products is a serious concern because of their harmful effects on human health. In the current study, a novel synergistic bimetallic nanocluster with gold and silver as an emission fluorescence probe was investigated for the simultaneous determination of tetracycline (TC), ampicillin (AMP), and sulfacetamide (SAC) antibiotics in the milk samples using excitation-emission matrix fluorescence (EEMF) spectroscopy. The multivariate curve resolution-alternating least squares (MCR-ALS) method was implemented to analyze augmented EEMF data sets to quantify the multicomponent systems in the presence of interferences with considerable spectral overlap. A pseudo-univariate calibration curve of the resolved emission spectra intensity against the concentration of the mentioned antibiotics was linear in the range of 5-5000 ng mL-1 for AMP and 50-5000 ng mL-1 for TC and SAC. The calculated values of the limit of detection ranged between 1.4 and 14.6 ng mL-1 with a relative standard deviation (RSD) of less than 4.9%. The obtained results show that the EEMF/MCR-ALS methodology using an emission fluorescence probe is a powerful tool for the simultaneous quantification of TC, AMP, and SAC in complex matrices with highly overlapped spectra.


Asunto(s)
Antibacterianos , Leche , Animales , Humanos , Ampicilina/análisis , Ampicilina/química , Colorantes Fluorescentes , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Tetraciclina/análisis , Tetraciclina/química
20.
Environ Res ; 215(Pt 2): 114339, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36115417

RESUMEN

Corn stalk-based and wheat straw-based biochar were modified by lignin impregnation and applied to adsorb tetracycline hydrochloride (TCH) in wastewater. Porous properties of lignin impregnated biochar were improved and showed better adsorption performance for TCH. Lignin impregnated wheat straw biochar (WS-L) had the maximum adsorption capacity of 31.48 mg/g, which was 1.89 times compared to corresponding pristine biochar, because excellent pore structure developed via the lignin impregnation and carbonization. The adsorption behavior of TCH molecules on biochar could be interpreted well by two-step process, and it postulated to be a physical adsorption process based on pore filling, hydrogen bonding, π-π interaction, and electrostatic interactions. And cations including Na+, K+, Mg2+ and Al3+ could compete with TCH for adsorption, while Ca2+ could promote TCH adsorption by forming tetracycline-Ca2+ complexes. Maximum TCH adsorption occurred at pH of 7. The best performing lignin impregnated biochar was WS-L that demonstrated the biochar modulated by lignin had the potential to remove antibiotics from aqueous solutions.


Asunto(s)
Tetraciclina , Contaminantes Químicos del Agua , Adsorción , Antibacterianos , Carbón Orgánico , Cinética , Lignina , Tetraciclina/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda