Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Mol Cell ; 75(5): 944-956.e6, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31326273

RESUMEN

Type III-A CRISPR-Cas surveillance complexes containing multi-subunit Csm effector, guide, and target RNAs exhibit multiple activities, including formation of cyclic-oligoadenylates (cAn) from ATP and subsequent cAn-mediated cleavage of single-strand RNA (ssRNA) by the trans-acting Csm6 RNase. Our structure-function studies have focused on Thermococcus onnurineus Csm6 to deduce mechanistic insights into how cA4 binding to the Csm6 CARF domain triggers the RNase activity of the Csm6 HEPN domain and what factors contribute to regulation of RNA cleavage activity. We demonstrate that the Csm6 CARF domain is a ring nuclease, whereby bound cA4 is stepwise cleaved initially to ApApApA>p and subsequently to ApA>p in its CARF domain-binding pocket, with such cleavage bursts using a timer mechanism to regulate the RNase activity of the Csm6 HEPN domain. In addition, we establish T. onnurineus Csm6 as an adenosine-specific RNase and identify a histidine in the cA4 CARF-binding pocket involved in autoinhibitory regulation of RNase activity.


Asunto(s)
Nucleótidos de Adenina/química , Proteínas Arqueales/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Oligorribonucleótidos/química , Ribonucleasas/química , Thermococcus/química , Sitios de Unión , Dominios Proteicos
2.
Mol Cell ; 75(5): 933-943.e6, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31326272

RESUMEN

Target RNA binding to crRNA-bound type III-A CRISPR-Cas multi-subunit Csm surveillance complexes activates cyclic-oligoadenylate (cAn) formation from ATP subunits positioned within the composite pair of Palm domain pockets of the Csm1 subunit. The generated cAn second messenger in turn targets the CARF domain of trans-acting RNase Csm6, triggering its HEPN domain-based RNase activity. We have undertaken cryo-EM studies on multi-subunit Thermococcus onnurineus Csm effector ternary complexes, as well as X-ray studies on Csm1-Csm4 cassette, both bound to substrate (AMPPNP), intermediates (pppAn), and products (cAn), to decipher mechanistic aspects of cAn formation and release. A network of intermolecular hydrogen bond alignments accounts for the observed adenosine specificity, with ligand positioning dictating formation of linear pppAn intermediates and subsequent cAn formation by cyclization. We combine our structural results with published functional studies to highlight mechanistic insights into the role of the Csm effector complex in mediating the cAn signaling pathway.


Asunto(s)
Nucleótidos de Adenina/química , Proteínas Arqueales/química , Sistemas CRISPR-Cas , Oligorribonucleótidos/química , Ribonucleasas/química , Sistemas de Mensajero Secundario , Thermococcus/química , Nucleótidos de Adenina/metabolismo , Proteínas Arqueales/metabolismo , Microscopía por Crioelectrón , Oligorribonucleótidos/metabolismo , Ribonucleasas/metabolismo , Thermococcus/metabolismo , Thermococcus/ultraestructura
3.
Proteins ; 92(6): 768-775, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38235908

RESUMEN

The biosynthesis pathways of coenzyme A (CoA) in most archaea involve several unique enzymes including dephospho-CoA kinase (DPCK) that converts dephospho-CoA to CoA in the final step of CoA biosynthesis in all domains of life. The archaeal DPCK is unrelated to the analogous bacterial and eukaryotic enzymes and shows no significant sequence similarity to any proteins with known structures. Unusually, the archaeal DPCK utilizes GTP as the phosphate donor although the analogous bacterial and eukaryotic enzymes are ATP-dependent kinases. Here, we report the crystal structure of DPCK and its complex with GTP and a magnesium ion from the archaeal hyperthermophile Thermococcus kodakarensis. The crystal structure demonstrates why GTP is the preferred substrate of this kinase. We also report the activity analyses of site-directed mutants of crucial residues determined based on sequence conservation and the crystal structure. From these results, the key residues involved in the reaction of phosphoryl transfer and the possible dephospho-CoA binding site are inferred.


Asunto(s)
Secuencia de Aminoácidos , Proteínas Arqueales , Guanosina Trifosfato , Magnesio , Modelos Moleculares , Fosfotransferasas (Aceptor de Grupo Alcohol) , Thermococcus , Thermococcus/enzimología , Thermococcus/genética , Thermococcus/química , Cristalografía por Rayos X , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Magnesio/metabolismo , Magnesio/química , Mutagénesis Sitio-Dirigida , Dominio Catalítico , Sitios de Unión , Especificidad por Sustrato , Coenzima A/metabolismo , Coenzima A/química , Unión Proteica
4.
Proteins ; 90(9): 1684-1698, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35435259

RESUMEN

Proliferating cell nuclear antigen (PCNA) is an essential protein for cell viability in archaea and eukarya, since it is involved in DNA replication and repair. In order to obtain insights regarding the characteristics that confer radioresistance, the structural study of the PCNA from Thermococcus gammatolerans (PCNATg ) in a gradient of ionizing radiation by X-ray crystallography was carried out, together with a bioinformatic analysis of homotrimeric PCNA structures, their sequences, and their molecular interactions. The results obtained from the datasets and the accumulated radiation dose for the last collection from three crystals revealed moderate and localized damage, since even with the loss of resolution, the electron density map corresponding to the last collection allowed to build the whole structure. Attempting to understand this behavior, multiple sequence alignments, and structural superpositions were performed, revealing that PCNA is a protein with a poorly conserved sequence, but with a highly conserved structure. The PCNATg presented the highest percentage of charged residues, mostly negatively charged, with a proportion of glutamate more than double aspartate, lack of cysteines and tryptophan, besides a high number of salt bridges. The structural study by X-ray crystallography reveals that the PCNATg has the intrinsic ability to resist high levels of ionizing radiation, and the bioinformatic analysis suggests that molecular evolution selected a particular composition of amino acid residues, and their consequent network of synergistic interactions for extreme conditions, as a collateral effect, conferring radioresistance to a protein involved in the chromosomal DNA metabolism of a radioresistant microorganism.


Asunto(s)
Thermococcus , ADN/metabolismo , Reparación del ADN , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Radiación Ionizante , Thermococcus/química , Thermococcus/genética
5.
J Bacteriol ; 203(7)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33468590

RESUMEN

Members of Thermococcales harbor a number of genes encoding putative aminotransferase class III enzymes. Here, we characterized the TK1211 protein from the hyperthermophilic archaeon Thermococcus kodakarensis The TK1211 gene was expressed in T. kodakarensis under the control of the strong, constitutive promoter of the cell surface glycoprotein gene TK0895 (P csg ). The purified protein did not display aminotransferase activity but exhibited racemase activity. An examination of most amino acids indicated that the enzyme was a racemase with relatively high activity toward Leu and Met. Kinetic analysis indicated that Leu was the most preferred substrate. A TK1211 gene disruption strain (ΔTK1211) was constructed and grown on minimal medium supplemented with l- or d-Leu or l- or d-Met. The wild-type T. kodakarensis is not able to synthesize Leu and displays Leu auxotrophy, providing a direct means to examine the Leu racemase activity of the TK1211 protein in vivo When we replaced l-Leu with d-Leu in the medium, the host strain with an intact TK1211 gene displayed an extended lag phase but displayed cell yield similar to that observed in medium with l-Leu. In contrast, the ΔTK1211 strain displayed growth in medium with l-Leu but could not grow with d-Leu. The results indicate that TK1211 encodes a Leu racemase that is active in T. kodakarensis cells and that no other protein exhibits this activity, at least to an extent that can support growth. Growth experiments with l- or d-Met also confirmed the Met racemase activity of the TK1211 protein in T. kodakarensisIMPORTANCE Phylogenetic analysis of aminotransferase class III proteins from all domains of life reveals numerous groups of protein sequences. One of these groups includes a large number of sequences from Thermococcales species and can be divided into four subgroups. Representatives of three of these subgroups have been characterized in detail. This study reveals that a representative from the remaining uncharacterized subgroup is an amino acid racemase with preference toward Leu and Met. Taken together with results of previous studies on enzymes from Pyrococcus horikoshii and Thermococcus kodakarensis, members of the four subgroups now can be presumed to function as a broad-substrate-specificity amino acid racemase (subgroup 1), alanine/serine racemase (subgroup 2), ornithine ω-aminotransferase (subgroup 3), or Leu/Met racemase (subgroup 4).


Asunto(s)
Isomerasas de Aminoácido/metabolismo , Proteínas Arqueales/metabolismo , Thermococcus/enzimología , Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/genética , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Calor , Cinética , Leucina/metabolismo , Metionina/metabolismo , Filogenia , Especificidad por Sustrato , Thermococcus/química , Thermococcus/genética , Thermococcus/metabolismo
6.
J Am Chem Soc ; 143(3): 1513-1520, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33449695

RESUMEN

Photopharmacology addresses the challenge of drug selectivity and side effects through creation of photoresponsive molecules activated with light with high spatiotemporal precision. This is achieved through incorporation of molecular photoswitches and photocages into the pharmacophore. However, the structural basis for the light-induced modulation of inhibitory potency in general is still missing, which poses a major design challenge for this emerging field of research. Here we solved crystal structures of the glutamate transporter homologue GltTk in complex with photoresponsive transport inhibitors-azobenzene derivative of TBOA (both in trans and cis configuration) and with the photocaged compound ONB-hydroxyaspartate. The essential role of glutamate transporters in the functioning of the central nervous system renders them potential therapeutic targets in the treatment of neurodegenerative diseases. The obtained structures provide a clear structural insight into the origins of photocontrol in photopharmacology and lay the foundation for application of photocontrolled ligands to study the transporter dynamics by using time-resolved X-ray crystallography.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Compuestos Azo/metabolismo , Sistema de Transporte de Aminoácidos X-AG/química , Ácido Aspártico/efectos de la radiación , Compuestos Azo/química , Compuestos Azo/efectos de la radiación , Cristalografía por Rayos X , Unión Proteica , Estereoisomerismo , Thermococcus/química , Rayos Ultravioleta
7.
Proc Natl Acad Sci U S A ; 115(27): 7045-7050, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915046

RESUMEN

Ni-Fe clusters are inserted into the large subunit of [NiFe] hydrogenases by maturation proteins such as the Ni chaperone HypA via an unknown mechanism. We determined crystal structures of an immature large subunit HyhL complexed with HypA from Thermococcus kodakarensis Structure analysis revealed that the N-terminal region of HyhL extends outwards and interacts with the Ni-binding domain of HypA. Intriguingly, the C-terminal extension of immature HyhL, which is cleaved in the mature form, adopts a ß-strand adjacent to its N-terminal ß-strands. The position of the C-terminal extension corresponds to that of the N-terminal extension of a mature large subunit, preventing the access of endopeptidases to the cleavage site of HyhL. These findings suggest that Ni insertion into the active site induces spatial rearrangement of both the N- and C-terminal tails of HyhL, which function as a key checkpoint for the completion of the Ni-Fe cluster assembly.


Asunto(s)
Proteínas Arqueales/química , Hidrogenasas/química , Chaperonas Moleculares/química , Complejos Multiproteicos/química , Subunidades de Proteína/química , Thermococcus/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Hidrogenasas/genética , Hidrogenasas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estructura Cuaternaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
8.
J Bacteriol ; 202(8)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32041795

RESUMEN

Archaeosine (G+) is a structurally complex modified nucleoside found quasi-universally in the tRNA of Archaea and located at position 15 in the dihydrouridine loop, a site not modified in any tRNA outside the Archaea G+ is characterized by an unusual 7-deazaguanosine core structure with a formamidine group at the 7-position. The location of G+ at position 15, coupled with its novel molecular structure, led to a hypothesis that G+ stabilizes tRNA tertiary structure through several distinct mechanisms. To test whether G+ contributes to tRNA stability and define the biological role of G+, we investigated the consequences of introducing targeted mutations that disrupt the biosynthesis of G+ into the genome of the hyperthermophilic archaeon Thermococcus kodakarensis and the mesophilic archaeon Methanosarcina mazei, resulting in modification of the tRNA with the G+ precursor 7-cyano-7-deazaguansine (preQ0) (deletion of arcS) or no modification at position 15 (deletion of tgtA). Assays of tRNA stability from in vitro-prepared and enzymatically modified tRNA transcripts, as well as tRNA isolated from the T. kodakarensis mutant strains, demonstrate that G+ at position 15 imparts stability to tRNAs that varies depending on the overall modification state of the tRNA and the concentration of magnesium chloride and that when absent results in profound deficiencies in the thermophily of T. kodakarensisIMPORTANCE Archaeosine is ubiquitous in archaeal tRNA, where it is located at position 15. Based on its molecular structure, it was proposed to stabilize tRNA, and we show that loss of archaeosine in Thermococcus kodakarensis results in a strong temperature-sensitive phenotype, while there is no detectable phenotype when it is lost in Methanosarcina mazei Measurements of tRNA stability show that archaeosine stabilizes the tRNA structure but that this effect is much greater when it is present in otherwise unmodified tRNA transcripts than in the context of fully modified tRNA, suggesting that it may be especially important during the early stages of tRNA processing and maturation in thermophiles. Our results demonstrate how small changes in the stability of structural RNAs can be manifested in significant biological-fitness changes.


Asunto(s)
Guanosina/análogos & derivados , Methanosarcina/metabolismo , ARN de Archaea/genética , ARN de Transferencia/genética , Thermococcus/metabolismo , Guanosina/metabolismo , Methanosarcina/química , Methanosarcina/genética , Estabilidad del ARN , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Thermococcus/química , Thermococcus/genética
9.
Amino Acids ; 52(2): 275-285, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31101997

RESUMEN

Branched-chain polyamines (BCPAs) are unique polycations found in (hyper)thermophiles. Thermococcus kodakarensis grows optimally at 85 °C and produces the BCPA N4-bis(aminopropyl)spermidine by sequential addition of decarboxylated S-adenosylmethionine (dcSAM) aminopropyl groups to spermidine (SPD) by BCPA synthase A (BpsA). The T. kodakarensis bpsA deletion mutant (DBP1) did not grow at temperatures at or above 93 °C, and grew at 90 °C only after a long lag period following accumulation of excess cytoplasmic SPD. This suggests that BCPA plays an essential role in cell growth at higher temperatures and raises the possibility that BCPA is involved in controlling gene expression. To examine the effects of BCPA on transcription, the RNA polymerase (RNAP) core fraction was extracted from another bpsA deletion mutant, DBP4 (RNAPDBP4), which carried a His-tagged rpoL, and its enzymatic properties were compared with those of RNAP from wild-type (WT) cells (RNAPWT). LC-MS analysis revealed that nine ribosomal proteins were detected from RNAPWT but only one form RNAPDBP4. These results suggest that BCPA increases the linkage between RNAP and ribosomes to achieve efficient coupling of transcription and translation. Both RNAPs exhibited highest transcription activity in vitro at 80 °C, but the specific activity of RNAPDBP4 was lower than that of RNAPWT. Upon addition of SPD and BCPA, both increased the transcriptional activity of RNAPDBP4; however, elevation by BCPA was achieved at a tenfold lower concentration. Addition of BCPA also protected RNAPDBP4 against thermal inactivation at 90 °C. These results suggest that BCPA increases transcriptional activity in T. kodakarensis by stabilizing the RNAP complex at high temperatures.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Poliaminas/metabolismo , Thermococcus/enzimología , Proteínas Arqueales/genética , ARN Polimerasas Dirigidas por ADN/genética , Estabilidad de Enzimas , Calor , Poliaminas/química , Thermococcus/química , Thermococcus/genética , Thermococcus/metabolismo
10.
Biochem Biophys Res Commun ; 511(1): 135-140, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30773259

RESUMEN

The hypothetical OCC_00372 protein from Thermococcus litoralis is a member of the ProR superfamily from hyperthermophilic archaea and exhibits unique bifunctional proline racemase/hydroxyproline 2-epimerase activity. However, the molecular mechanism of the broad substrate specificity and extreme thermostability of this enzyme (TlProR) remains unclear. Here we determined the crystal structure of TlProR at 2.7 Šresolution. Of note, a substrate proline molecule, derived from expression host Escherichia coli cells, was tightly bound in the active site of TlProR. The substrate bound structure and mutational analyses suggested that Trp241 is involved in hydroxyproline recognition by making a hydrogen bond between the indole group of Trp241 and the hydroxyl group of hydroxyproline. Additionally, Tyr171 may contribute to the thermostability by making hydrogen bonds between the hydroxyl group of Tyr171 and catalytic residues. Our structural and functional analyses provide a structural basis for understanding the molecular mechanism of substrate specificity and thermostability of ProR superfamily proteins.


Asunto(s)
Isomerasas de Aminoácido/química , Thermococcus/enzimología , Isomerasas de Aminoácido/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Hidroxiprolina/metabolismo , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato , Thermococcus/química , Thermococcus/metabolismo
11.
Biochem Biophys Res Commun ; 516(1): 189-195, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31208721

RESUMEN

Hydroxyprolines (Hyp) are non-standard amino acids derived from the post-translational modification of proteins by prolyl hydroxylase enzymes. Some plants and bacteria produce Hyp, and the isomers trans-3-Hydroxy-l-proline (T3LHyp) and trans-4-Hydroxy-l-proline (T4LHyp) are major components of mammalian collagen. While T4LHyp is metabolised following distinct degradative pathways in mammals and bacteria, T3LHyp metabolic pathway is conserved in bacteria, plants and mammals, and involves a T3LHyp dehydratase (T3LHypD) in the first degradation step. We report here the crystal structure of T3LHypD from the archaea Thermococcus litoralis in the free and substrate-complexed form. The model shows an "open" and a "closed" conformation depending on the presence (or absence) of the substrate in the catalytic site and allows the mapping of the residues involved in ligand recognition. Moreover, the structure highlights the presence of a water molecule interacting with the hydroxy group of the substrate and potentially involved in catalysis. The structure here reported is the first of its family to be elucidated, and represents a valid model for rationalising the substrate specificity and catalysis of T3LHyp dehydratases.


Asunto(s)
Proteínas Arqueales/metabolismo , Hidroliasas/metabolismo , Hidroxiprolina/metabolismo , Thermococcus/enzimología , Proteínas Arqueales/química , Dominio Catalítico , Cristalografía por Rayos X , Hidroliasas/química , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato , Thermococcus/química , Thermococcus/metabolismo
12.
Appl Microbiol Biotechnol ; 103(9): 3795-3806, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30919103

RESUMEN

DNA ligases are essential enzymes for DNA replication, repair, and recombination processes by catalyzing a nick-joining reaction in double-stranded DNA. The genome of the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 encodes a putative ATP-dependent DNA ligase (Tba ligase). Herein, we characterized the biochemical properties of the recombinant Tba ligase. The enzyme displays an optimal nick-joining activity at 65-70 °C and retains its DNA ligation activity even after heated at 100 °C for 2 h, suggesting the enzyme is a thermostable DNA ligase. The enzyme joins DNA over a wide pH spectrum ranging from 5.0-10.0, and its optimal pH is 6.0-9.0. Tba ligase activity is dependent on a divalent metal ion: Mn2+, Mg2+, or Ca2+ is an optimal ion for the enzyme activity. The enzyme activity is inhibited by NaCl with high concentrations. Tba ligase is ATP-dependent and can also use UTP as a weak cofactor; however, the enzyme with high concentrations could function without an additional nucleotide cofactor. Mass spectrometric result shows that the residue K250 of Tba ligase is AMPylated, suggesting that the enzyme is bound to AMP. The substitution of K250 of Tba ligase with Ala abolishes the enzyme activity. In addition, the mismatches at the first position 3' to the nick suppress Tba ligase activity more than those at the first position 5' to the nick. The enzyme also discriminates more effectively mismatches at 3' to the nick than those at 5' to the nick in a ligation cycling reaction, suggesting that the enzyme might have potential application in single nucleotide polymorphism.


Asunto(s)
Proteínas Arqueales/química , ADN Ligasas/química , Thermococcus/enzimología , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Clonación Molecular , ADN/genética , ADN/metabolismo , ADN Ligasas/genética , ADN Ligasas/metabolismo , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Especificidad por Sustrato , Thermococcus/química , Thermococcus/genética
13.
J Biol Chem ; 292(12): 4996-5006, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28130448

RESUMEN

The archaeal exo-ß-d-glucosaminidase (GlmA) is a dimeric enzyme that hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a member of the glycosidase hydrolase (GH)-A superfamily-subfamily 35 and is a novel enzyme in terms of its primary structure. Here, we present the crystal structure of GlmA in complex with glucosamine at 1.27 Å resolution. The structure reveals that a monomeric form of GlmA shares structural homology with GH42 ß-galactosidases, whereas most of the spatial positions of the active site residues are identical to those of GH35 ß-galactosidases. We found that upon dimerization, the active site of GlmA changes shape, enhancing its ability to hydrolyze the smaller substrate in a manner similar to that of homotrimeric GH42 ß-galactosidase. However, GlmA can differentiate glucosamine from galactose based on one charged residue while using the "evolutionary heritage residue" it shares with GH35 ß-galactosidase. Our study suggests that GH35 and GH42 ß-galactosidases evolved by exploiting the structural features of GlmA.


Asunto(s)
Glicósido Hidrolasas/química , Hexosaminidasas/química , Pyrococcus horikoshii/enzimología , Thermococcus/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Glucosamina/metabolismo , Glicósido Hidrolasas/metabolismo , Hexosaminidasas/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Pyrococcus horikoshii/química , Pyrococcus horikoshii/metabolismo , Especificidad por Sustrato , Thermococcus/química , Thermococcus/metabolismo
14.
Biochem Biophys Res Commun ; 498(4): 782-788, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29526754

RESUMEN

The immature large subunit of [NiFe] hydrogenases undergoes C-terminal cleavage by a specific protease in the final step of the post-translational process before assembly with other subunits. It has been reported that the [NiFe] hydrogenase maturation protease HycI from Thermococcus kodakarensis (TkHycI) has the catalytic ability to target the membrane-bound hydrogenase large subunit MbhL from T. kodakarensis. However, the detailed mechanism of its substrate recognition remains elusive. We determined the crystal structure of TkHycI at 1.59 Šresolution to clarify how TkHycI recognizes its own substrate MbhL. Although the overall structure of TkHycI is similar to that of its homologous protease TkHybD, TkHycI adopts a larger loop than TkHybD, thereby creating a broad and deep cleft. We analyzed the structural properties of the TkHycI cleft probably involved in its substrate recognition. Our findings provide novel and profound insights into the substrate selectivity of TkHycI.


Asunto(s)
Endopeptidasas/metabolismo , Hidrogenasas/metabolismo , Thermococcus/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Endopeptidasas/química , Hidrogenasas/química , Modelos Moleculares , Conformación Proteica , Alineación de Secuencia , Especificidad por Sustrato , Thermococcus/química , Thermococcus/metabolismo
15.
Chemphyschem ; 19(18): 2299-2304, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-29931720

RESUMEN

A pentavalent branched-chain polyamine, N4 -bis(aminopropyl)spermidine 3(3)(3)4, is a unique polycation found in the hyperthermophilic archaeon Thermococcus kodakarensis, which grows at temperatures between 60 and 100 °C. We studied the effects of this branched-chain polyamine on DNA structure at different temperatures up to 80 °C. Atomic force microscopic observation revealed that 3(3)(3)4 induces a mesh-like structure on a large DNA (166 kbp) at 24 °C. With an increase in temperature, DNA molecules tend to unwind, and multiple nano-loops with a diameter of 10-50 nm are generated along the DNA strand at 80 °C. These results were compared to those obtained with linear-chain polyamines, homocaldopentamine 3334 and spermidine, the former of which is a structural isomer of 3(3)(3)4. These specific effects are expected to neatly concern with its role on high-temperature preference in hyperthermophiles.


Asunto(s)
ADN/química , Espermidina/análogos & derivados , Espermidina/química , Animales , Bacteriófago T4/genética , Bovinos , ADN/genética , Genoma , Calor , Microscopía de Fuerza Atómica , Conformación de Ácido Nucleico , Poliaminas/química , Espermidina/síntesis química , Thermococcus/química
16.
Protein Expr Purif ; 142: 45-52, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28965803

RESUMEN

Protein tyrosine phosphatase non-receptor type 12 (PTPN12), also known as PTP-PEST, was broadly expressed in hemopoietic cells. Recent research has shown that this enzyme is involved in tumorigenesis, as well as in tumor progression and transfer, as it can suppress multiple oncogenic tyrosine kinases. However, the difficulty of soluble expression of PTP-PEST in prokaryotic cells has resulted in great limitations in investigating its structure and functions. In this study, we successfully carried out soluble expression of the catalytic domain of PTP-PEST (ΔPTP-PEST) in Escherichia coli and performed an enzymatic characterization and kinetics. To confirm expression efficiency, we also induced the expression of the chaperon, FKBP_C. FKBP_C expression indicated efficacious prokaryotic expression of ΔPTP-PEST. In conclusion, our work yielded a practical expression system and two-step chromatography purification method that may serve as a valuable tool for the structural and functional analysis of proteins that are difficult to express in the soluble form in prokaryotic cells.


Asunto(s)
Proteínas Arqueales/genética , Chaperonas Moleculares/genética , Isomerasa de Peptidilprolil/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 12/genética , Proteínas de Unión a Tacrolimus/genética , Thermococcus/química , Proteínas Arqueales/metabolismo , Dominio Catalítico , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Chaperonas Moleculares/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 12/aislamiento & purificación , Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Thermococcus/metabolismo
17.
Nucleic Acids Res ; 44(13): 6232-41, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27141962

RESUMEN

Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain a canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.


Asunto(s)
ADN/química , Péptidos/química , Antígeno Nuclear de Célula en Proliferación/química , Conformación Proteica , Cristalografía por Rayos X , ADN/metabolismo , Conformación de Ácido Nucleico , Péptidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Dominios Proteicos , Thermococcus/química , Thermococcus/metabolismo
18.
Nucleic Acids Res ; 44(13): 6377-90, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27325738

RESUMEN

N(2)-methylguanosine is one of the most universal modified nucleosides required for proper function in transfer RNA (tRNA) molecules. In archaeal tRNA species, a specific S-adenosyl-L-methionine (SAM)-dependent tRNA methyltransferase (MTase), aTrm11, catalyzes formation of N(2)-methylguanosine and N(2),N(2)-dimethylguanosine at position 10. Here, we report the first X-ray crystal structures of aTrm11 from Thermococcus kodakarensis (Tko), of the apo-form, and of its complex with SAM. The structures show that TkoTrm11 consists of three domains: an N-terminal ferredoxinlike domain (NFLD), THUMP domain and Rossmann-fold MTase (RFM) domain. A linker region connects the THUMP-NFLD and RFM domains. One SAM molecule is bound in the pocket of the RFM domain, suggesting that TkoTrm11 uses a catalytic mechanism similar to that of other tRNA MTases containing an RFM domain. Furthermore, the conformation of NFLD and THUMP domains in TkoTrm11 resembles that of other tRNA-modifying enzymes specifically recognizing the tRNA acceptor stem. Our docking model of TkoTrm11-SAM in complex with tRNA, combined with biochemical analyses and pre-existing evidence, provides insights into the substrate tRNA recognition mechanism: The THUMP domain recognizes a 3'-ACCA end, and the linker region and RFM domain recognize the T-stem, acceptor stem and V-loop of tRNA, thereby causing TkoTrm11 to specifically identify its methylation site.


Asunto(s)
Metilación de ADN/genética , ARN de Transferencia/genética , Thermococcus/química , ARNt Metiltransferasas/química , Secuencia de Aminoácidos/genética , Sitios de Unión , Cristalografía por Rayos X , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Simulación del Acoplamiento Molecular , ARN de Transferencia/química , Motivos de Unión al ARN/genética , S-Adenosilmetionina/química , Alineación de Secuencia , Thermococcus/enzimología , ARNt Metiltransferasas/metabolismo
19.
J Biol Chem ; 291(41): 21630-21643, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27566549

RESUMEN

We recently discovered a biosynthetic system using a novel amino group carrier protein called LysW for lysine biosynthesis via α-aminoadipate (AAA), and revealed that this system is also utilized in the biosynthesis of arginine by Sulfolobus In the present study, we focused on the biosynthesis of lysine and ornithine in the hyperthermophilic archaeon Thermococcus kodakarensis, and showed that their biosynthesis is accomplished by a single set of metabolic enzymes. We also determined the crystal structure of the LysX family protein from T. kodakarensis, which catalyzes the conjugation of LysW with either AAA or glutamate, in a complex with LysW-γ-AAA. This crystal structure is the first example to show how LysX recognizes AAA as a substrate and provides a structural basis for the bifunctionality of the LysX family protein from T. kodakarensis Based on comparisons with other LysX family proteins, we propose a mechanism for substrate recognition and its relationship with molecular evolution among LysX family proteins, which have different substrate specificities.


Asunto(s)
Proteínas Arqueales , Proteínas Portadoras , Lisina , Ornitina , Thermococcus , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Lisina/biosíntesis , Lisina/química , Lisina/genética , Ornitina/química , Ornitina/genética , Ornitina/metabolismo , Dominios Proteicos , Thermococcus/química , Thermococcus/genética , Thermococcus/metabolismo
20.
J Biol Chem ; 290(20): 12514-22, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25814667

RESUMEN

During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed.


Asunto(s)
Proteínas Arqueales/química , ADN Polimerasa III/química , ADN Polimerasa beta/química , ADN de Archaea/química , ADN/química , Thermococcus/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , ADN/genética , ADN/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Replicación del ADN/fisiología , ADN de Archaea/biosíntesis , ADN de Archaea/genética , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda