Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS Biol ; 17(10): e3000181, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31574080

RESUMEN

Antagonistic interactions drive host-virus evolutionary arms races, which often manifest as recurrent amino acid changes (i.e., positive selection) at their protein-protein interaction interfaces. Here, we investigated whether combinatorial mutagenesis of positions under positive selection in a host antiviral protein could enhance its restrictive properties. We tested approximately 700 variants of human MxA, generated by combinatorial mutagenesis, for their ability to restrict Thogotovirus (THOV). We identified MxA super-restrictors with increased binding to the THOV nucleoprotein (NP) target protein and 10-fold higher anti-THOV restriction relative to wild-type human MxA, the most potent naturally occurring anti-THOV restrictor identified. Our findings reveal a means to elicit super-restrictor antiviral proteins by leveraging signatures of positive selection. Although some MxA super-restrictors of THOV were impaired in their restriction of H5N1 influenza A virus (IAV), other super-restrictor variants increased THOV restriction without impairment of IAV restriction. Thus, broadly acting antiviral proteins such as MxA mitigate breadth-versus-specificity trade-offs that could otherwise constrain their adaptive landscape.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/genética , Proteínas de Resistencia a Mixovirus/genética , Nucleoproteínas/genética , Thogotovirus/genética , Proteínas Virales/genética , Secuencias de Aminoácidos , Línea Celular Tumoral , Evolución Molecular , Regulación de la Expresión Génica , Biblioteca de Genes , Células HEK293 , Hepatocitos/inmunología , Hepatocitos/metabolismo , Hepatocitos/virología , Especificidad del Huésped , Humanos , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Mutagénesis , Proteínas de Resistencia a Mixovirus/inmunología , Proteínas de Resistencia a Mixovirus/metabolismo , Nucleoproteínas/metabolismo , Transducción de Señal , Thogotovirus/metabolismo , Proteínas Virales/metabolismo
2.
J Struct Biol ; 208(2): 99-106, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31419524

RESUMEN

Thogotoviruses are important zoonotic viruses infecting a variety of domestic animals, as well as humans. Among these viruses, Bourbon virus (BRBV) is one of the several human-infecting members, which emerged in the US in recent years and caused human deaths. Here, we report the crystal structure of the BRBV envelope glycoprotein in the postfusion conformation. The structure adopts the typical fold of a class III viral fusion protein and displays an extensive positively charged electrostatic potential pattern, which resembles the glycoprotein of Dhori virus and is consistent with our previous predictions. In addition, compared to other previously defined class III viral fusion proteins, the structures of all thogotovirus glycoproteins and homologs are more similar to herpes virus glycoprotein Bs than to the rhabdovirus G proteins. Thus, class III viral fusion proteins are quite diverse in structure, and sub-classes may have developed during evolution.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Thogotovirus/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Línea Celular , Glicoproteínas/genética , Humanos , Modelos Moleculares , Filogenia , Conformación Proteica , Proteínas del Envoltorio Viral/genética , Proteínas Virales de Fusión/genética
3.
PLoS Pathog ; 12(1): e1005411, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26816272

RESUMEN

Influenza viruses cause seasonal flu each year and pandemics or epidemic sporadically, posing a major threat to public health. Recently, a new influenza D virus (IDV) was isolated from pigs and cattle. Here, we reveal that the IDV utilizes 9-O-acetylated sialic acids as its receptor for virus entry. Then, we determined the crystal structures of hemagglutinin-esterase-fusion glycoprotein (HEF) of IDV both in its free form and in complex with the receptor and enzymatic substrate analogs. The IDV HEF shows an extremely similar structural fold as the human-infecting influenza C virus (ICV) HEF. However, IDV HEF has an open receptor-binding cavity to accommodate diverse extended glycan moieties. This structural difference provides an explanation for the phenomenon that the IDV has a broad cell tropism. As IDV HEF is structurally and functionally similar to ICV HEF, our findings highlight the potential threat of the virus to public health.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Infecciones por Orthomyxoviridae/virología , Thogotovirus/metabolismo , Proteínas Virales de Fusión/metabolismo , Animales , Sitios de Unión , Western Blotting , Bovinos , Cristalografía por Rayos X , Perros , Humanos , Células de Riñón Canino Madin Darby , Análisis por Matrices de Proteínas , Conformación Proteica , Porcinos , Thogotovirus/química , Internalización del Virus
4.
J Virol ; 90(20): 9330-7, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27512061

RESUMEN

UNLABELLED: Type I interferons (IFNs) crucially contribute to host survival upon viral infections. Robust expression of type I IFNs (IFN-α/ß) and induction of an antiviral state critically depend on amplification of the IFN signal via the type I IFN receptor (IFNAR). A small amount of type I IFN produced early upon virus infection binds the IFNAR and activates a self-enhancing positive feedback loop, resulting in induction of large, protective amounts of IFN-α. Unexpectedly, we found robust, systemic IFN-α expression upon infection of IFNAR knockout mice with the orthomyxovirus Thogoto virus (THOV). The IFNAR-independent IFN-α production required in vivo conditions and was not achieved during in vitro infection. Using replication-incompetent THOV-derived virus-like particles, we demonstrate that IFNAR-independent type I IFN induction depends on viral polymerase activity but is largely independent of viral replication. To discover the cell type responsible for this effect, we used type I IFN reporter mice and identified CD11b(+) F4/80(+) myeloid cells within the peritoneal cavity of infected animals as the main source of IFNAR-independent type I IFN, corresponding to the particular tropism of THOV for this cell type. IMPORTANCE: Type I IFNs are crucial for the survival of a host upon most viral infections, and, moreover, they shape subsequent adaptive immune responses. Production of protective amounts of type I IFN critically depends on the positive feedback amplification via the IFNAR. Unexpectedly, we observed robust IFNAR-independent type I IFN expression upon THOV infection and unraveled molecular mechanisms and determined the tissue and cell type involved. Our data indicate that the host can effectively use alternative pathways to induce type I IFN responses if the classical feedback amplification is not available. Understanding how type I IFN can be produced in large amounts independently of IFNAR-dependent enhancement will identify mechanisms which might contribute to novel therapeutic strategies to fight viral pathogens.


Asunto(s)
Antígeno CD11b/metabolismo , Interferón Tipo I/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Peritoneo/virología , Receptor de Interferón alfa y beta/metabolismo , Thogotovirus/metabolismo , Animales , Humanos , Interferón-alfa/metabolismo , Interferón beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peritoneo/metabolismo , Transducción de Señal/fisiología , Replicación Viral/fisiología
5.
J Biol Chem ; 290(20): 12779-92, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25829498

RESUMEN

Myxovirus resistance (Mx) GTPases are induced by interferon and inhibit multiple viruses, including influenza and human immunodeficiency viruses. They have the characteristic domain architecture of dynamin-related proteins with an N-terminal GTPase (G) domain, a bundle signaling element, and a C-terminal stalk responsible for self-assembly and effector functions. Human MxA (also called MX1) is expressed in the cytoplasm and is partly associated with membranes of the smooth endoplasmic reticulum. It shows a protein concentration-dependent increase in GTPase activity, indicating regulation of GTP hydrolysis via G domain dimerization. Here, we characterized a panel of G domain mutants in MxA to clarify the role of GTP binding and the importance of the G domain interface for the catalytic and antiviral function of MxA. Residues in the catalytic center of MxA and the nucleotide itself were essential for G domain dimerization and catalytic activation. In pulldown experiments, MxA recognized Thogoto virus nucleocapsid proteins independently of nucleotide binding. However, both nucleotide binding and hydrolysis were required for the antiviral activity against Thogoto, influenza, and La Crosse viruses. We further demonstrate that GTP binding facilitates formation of stable MxA assemblies associated with endoplasmic reticulum membranes, whereas nucleotide hydrolysis promotes dynamic redistribution of MxA from cellular membranes to viral targets. Our study highlights the role of nucleotide binding and hydrolysis for the intracellular dynamics of MxA during its antiviral action.


Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Resistencia a Mixovirus/metabolismo , Proteínas de la Nucleocápside/metabolismo , Multimerización de Proteína/fisiología , Thogotovirus/metabolismo , Línea Celular , Retículo Endoplásmico/genética , Activación Enzimática/genética , GTP Fosfohidrolasas/genética , Humanos , Hidrólisis , Membranas Intracelulares/metabolismo , Virus La Crosse/genética , Virus La Crosse/metabolismo , Proteínas de Resistencia a Mixovirus/genética , Proteínas de la Nucleocápside/genética , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , Estructura Terciaria de Proteína , Thogotovirus/genética
6.
Structure ; 32(8): 1068-1078.e5, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38749445

RESUMEN

Orthomyxoviruses, such as influenza and thogotoviruses, are important human and animal pathogens. Their segmented viral RNA genomes are wrapped by viral nucleoproteins (NPs) into helical ribonucleoprotein complexes (RNPs). NP structures of several influenza viruses have been reported. However, there are still contradictory models of how orthomyxovirus RNPs are assembled. Here, we characterize the crystal structure of Thogoto virus (THOV) NP and found striking similarities to structures of influenza viral NPs, including a two-lobed domain architecture, a positively charged RNA-binding cleft, and a tail loop important for trimerization and viral transcription. A low-resolution cryo-electron tomography reconstruction of THOV RNPs elucidates a left-handed double helical assembly. By providing a model for RNP assembly of THOV, our study suggests conserved NP assembly and RNA encapsidation modes for thogoto- and influenza viruses.


Asunto(s)
Modelos Moleculares , ARN Viral , Ribonucleoproteínas , Thogotovirus , ARN Viral/metabolismo , ARN Viral/química , Thogotovirus/metabolismo , Thogotovirus/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , Cristalografía por Rayos X , Microscopía por Crioelectrón , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Unión Proteica , Sitios de Unión , Humanos , Ensamble de Virus
7.
Structure ; 32(8): 1027-1028, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121836

RESUMEN

The genome of segmented negative-sense single-stranded RNA viruses, such as influenza virus and bunyaviruses, is coated by viral nucleoproteins (NPs), forming a ribonucleoprotein (RNP). In this issue of Structure, Dick et al.1 expand our knowledge on the RNPs of these viruses by solving the structures of Thogoto virus NP and RNP.


Asunto(s)
Ribonucleoproteínas , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , ARN Viral/química , ARN Viral/metabolismo , ARN Viral/genética , Thogotovirus/química , Thogotovirus/metabolismo , Virus ARN/genética , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/genética , Modelos Moleculares , Nucleoproteínas/química , Nucleoproteínas/metabolismo
8.
Nat Commun ; 15(1): 4620, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816392

RESUMEN

Influenza viruses and thogotoviruses account for most recognized orthomyxoviruses. Thogotoviruses, exemplified by Thogoto virus (THOV), are capable of infecting humans using ticks as vectors. THOV transcribes mRNA without the extraneous 5' end sequences derived from cap-snatching in influenza virus mRNA. Here, we report cryo-EM structures to characterize THOV polymerase RNA synthesis initiation and elongation. The structures demonstrate that THOV RNA transcription and replication are able to start with short dinucleotide primers and that the polymerase cap-snatching machinery is likely non-functional. Triggered by RNA synthesis, asymmetric THOV polymerase dimers can form without the involvement of host factors. We confirm that, distinctive from influenza viruses, THOV-polymerase RNA synthesis is weakly dependent of the host factors ANP32A/B/E in human cells. This study demonstrates varied mechanisms in RNA synthesis and host factor utilization among orthomyxoviruses, providing insights into the mechanisms behind thogotoviruses' broad-infectivity range.


Asunto(s)
Microscopía por Crioelectrón , ARN Viral , Thogotovirus , Transcripción Genética , Replicación Viral , Humanos , Thogotovirus/genética , Thogotovirus/metabolismo , Thogotovirus/ultraestructura , ARN Viral/metabolismo , ARN Viral/genética , Replicación Viral/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/química , Proteínas Virales/ultraestructura
9.
Vet Microbiol ; 264: 109298, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34906835

RESUMEN

The influenza D virus (IDV) uses a trimeric hemagglutinin-esterase fusion protein (HEF) for attachment to 9-O-acetylated sialic acid receptors on the cell surface of host species. So far research has revealed that farm animals such as cattle, domestic pigs, goats, sheep and horses contain the necessary receptors on the epithelial surface of the respiratory tract to accommodate binding of the IDV HEF protein of both worldwide clades D/Oklahoma (D/OK) and D/Oklahoma/660 (D/660). More recently, seroprevalence studies have identified IDV-seropositive wildlife such as wild boar, deer, dromedaries, and small ruminants. However, no research has thus far been conducted in wildlife to reveal the distribution of acetylated sialic acid receptors that accommodate binding of IDV. Using our previously developed tissue microarray (TMA) system, we developed TMAs containing respiratory tissues of various wild and domestic species including wild boar, deer, dromedary, springbok, water buffalo, tiger, hedgehog, and Asian elephant. Protein histochemical staining of these TMAs with HEF proteins showed no receptor binding for wild Suidae, Cervidae and tiger. However, receptors were present in dromedary, springbok, water buffalo, Asian elephant, and hedgehog. In contrast to previously tested farm animals, a difference in host tropism was observed between the D/OK and D/660 clade HEF proteins in Asian elephant, and water buffalo. These results show that IDV can attach to the respiratory tract of wildlife which might facilitate transmission of IDV between wildlife and domestic animals.


Asunto(s)
Infecciones por Orthomyxoviridae , Receptores de Superficie Celular , Thogotovirus , Animales , Animales Domésticos/virología , Animales Salvajes/virología , Bovinos , Ciervos , Caballos , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Receptores de Superficie Celular/inmunología , Estudios Seroepidemiológicos , Ovinos , Thogotovirus/clasificación , Thogotovirus/genética , Thogotovirus/metabolismo
10.
Viruses ; 12(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003329

RESUMEN

Emerging influenza D viruses (IDVs), the newest member in the genus Orthomyxovirus family, which can infect and transmit in multiple mammalian species as its relatives the influenza A viruses (IAVs). Additional studies of biological characteristics of IDVs are needed; here, we studied the characteristics of IDV nonstructural protein 2 (NS2), which shares the lowest homology to known influenza proteins. First, we generated reassortant viruses via reverse genetics to analyze the segment compatibility and gene interchangeability between IAVs and IDVs. Next, we investigated the locations and exact sequences of nuclear export signals (NESs) of the IDV NS2 protein. Surprisingly, three separate NES regions were found to contribute to the nuclear export of an eGFP fusion protein. Alanine scanning mutagenesis identified critical amino acid residues within each NES, and co-immunoprecipitation experiments demonstrated that their nuclear export activities depend on the CRM1-mediated pathway, particularly for the third NES (136-146aa) of IDV NS2. Interestingly, the third NES was important for the interaction of NS2 protein with CRM1. The findings in this study contribute to the understanding of IDV NS2 protein's role during nucleocytoplasmic transport of influenza viral ribonucleoprotein complexes (vRNPs) and will also facilitate the development of novel anti-influenza drugs targeting nuclear export signals of IDV NS2 protein.


Asunto(s)
Señales de Exportación Nuclear , Thogotovirus/genética , Thogotovirus/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Núcleo Celular/virología , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Mutagénesis Sitio-Dirigida , Análisis de Secuencia
11.
Virology ; 545: 16-23, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32174455

RESUMEN

Influenza D virus (IDV) utilizes bovines as a primary reservoir with periodical spillover to other mammalian hosts. By using traditional hemagglutination assay coupled with sialoglycan microarray (SGM) platform and functional assays, we demonstrated that IDV is more efficient in recognizing both 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac) than influenza C virus (ICV), a ubiquitous human pathogen. ICV seems to strongly prefer Neu5,9Ac2 over Neu5Gc9Ac. Since Neu5Gc9Ac is different from Neu5,9Ac2 only by an additional oxygen in the group at the C5 position, our results reveal that the hydroxyl group in Neu5Gc9Ac plays a critical role in determining receptor binding specificity, which as a result may discriminate IDV from ICV in communicating with 9-O-acetylated SAs. These findings shall provide a framework for further investigation towards better understanding of how newly discovered multiple-species-infecting IDV exploits natural 9-O-acetylated SA variations to expand its host range.


Asunto(s)
Gammainfluenzavirus/metabolismo , Gripe Humana/metabolismo , Polisacáridos/metabolismo , Receptores Virales/metabolismo , Thogotovirus/metabolismo , Humanos , Gripe Humana/virología , Gammainfluenzavirus/genética , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/química , Receptores Virales/química , Ácidos Siálicos/metabolismo , Thogotovirus/clasificación , Thogotovirus/genética , Thogotovirus/aislamiento & purificación
12.
Sci Rep ; 9(1): 600, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679709

RESUMEN

This paper focuses on the nucleoprotein (NP) of the newly identified member of the Orthomyxoviridae family, Influenza D virus. To date several X-ray structures of NP of Influenza A (A/NP) and B (B/NP) viruses and of infectious salmon anemia (ISA/NP) virus have been solved. Here we purified, characterized and solved the X-ray structure of the tetrameric D/NP at 2.4 Å resolution. The crystal structure of its core is similar to NP of other Influenza viruses. However, unlike A/NP and B/NP which possess a flexible amino-terminal tail containing nuclear localization signals (NLS) for their nuclear import, D/NP possesses a carboxy-terminal tail (D/NPTAIL). We show that D/NPTAIL harbors a bipartite NLS and designed C-terminal truncated mutants to demonstrate the role of D/NPTAIL for nuclear transport.


Asunto(s)
Núcleo Celular/metabolismo , Nucleoproteínas/química , Orthomyxoviridae/metabolismo , Thogotovirus/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Cristalografía por Rayos X , Células HEK293 , Humanos , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , alfa Carioferinas/metabolismo
13.
PLoS One ; 13(6): e0199227, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29927982

RESUMEN

BACKGROUND: A new type of influenza virus, known as type D, has recently been identified in cattle and pigs. Influenza D virus infection in cattle is typically asymptomatic; however, its infection in swine can result in clinical disease. Swine can also be infected with all other types of influenza viruses, namely A, B, and C. Consequently, swine can serve as a "mixing vessel" for highly pathogenic influenza viruses, including those with zoonotic potential. Currently, the only antiviral drug available targets influenza M2 protein ion channel is not completely effective. Thus, it is necessary to develop an M2 ion channel blocker capable of suppressing the induction of resistance to the genetic shift. To provide a basis for developing novel ion channel-blocking compounds, we investigated the properties of influenza D virus M2 protein (DM2) as a drug target. RESULTS: To test the ion channel activity of DM2, the DNA corresponding to DM2 with cMyc-tag conjugated to its carboxyl end was cloned into the shuttle vector pNCB1. The mRNA of the DM2-cMyc gene was synthesized and injected into Xenopus oocytes. The translation products of DM2-cMyc mRNA were confirmed by immunofluorescence and mass spectrometry analyses. The DM2-cMyc mRNA-injected oocytes were subjected to the two-electrode voltage-clamp (TEVC) method, and the induced inward current was observed. The midpoint (Vmid) values in Boltzmann modeling for oocytes injected with DM2-cMyc RNA or a buffer were -152 and -200 mV, respectively. Assuming the same expression level in the Xenopus oocytes, DM2 without tag and influenza C virus M2 protein (CM2) were subjected to the TEVC method. DM2 exhibited ion channel activity under the condition that CM2 ion channel activity was reproduced. The gating voltages represented by Vmid for CM2 and DM2 were -141 and -146 mV, respectively. The reversal potentials observed in ND96 for CM2 and DM2 were -21 and -22 mV, respectively. Compared with intact DM2, DM2 variants with mutation in the YxxxK motif, namely Y72A and K76A DM2, showed lower Vmid values while showing no change in reversal potential. CONCLUSION: The M2 protein from newly isolated influenza D virus showed ion channel activity similar to that of CM2. The gating voltage was shown to be affected by the YxxxK motif and by the hydrophobicity and bulkiness of the carboxyl end of the molecule.


Asunto(s)
Canales Iónicos/metabolismo , Oocitos/metabolismo , Thogotovirus/metabolismo , Proteínas Virales/metabolismo , Xenopus laevis/metabolismo , Secuencia de Aminoácidos , Animales , Electrodos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Canales Iónicos/química , Modelos Moleculares , Técnicas de Placa-Clamp , Péptidos/química , Relación Estructura-Actividad , Proteínas Virales/química
14.
Virus Res ; 95(1-2): 3-12, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12921991

RESUMEN

Most RNA viruses that lack a DNA phase replicate in the cytoplasm. However, several negative-stranded RNA viruses such as influenza, Thogoto, and Borna disease viruses replicate their RNAs in the nucleus, taking advantage of the host cell's nuclear machinery. A challenge faced by these viruses is the trafficking of viral components into and out of the nucleus through the nuclear membrane. The genomic RNAs of these viruses associate with proteins to form large complexes called viral ribonucleoproteins (vRNPs), which exceed the size limit for passive diffusion through the nuclear pore complex (NPC). To insure efficient transport across the nuclear membrane, these viruses use nuclear import and export signals exposed on the vRNPs. These signals recruit the cellular import and export complexes, which are responsible for the translocation of the vRNPs through the NPC. The ability to control the direction of vRNP trafficking throughout the viral life cycle is critical. Various mechanisms, ranging from simple post-translational modification to complex, sequential masking-and-exposure of localization signals, are used to insure the proper movement of the vRNPs.


Asunto(s)
Virus de la Enfermedad de Borna/metabolismo , Núcleo Celular/metabolismo , Virus de la Influenza A/metabolismo , ARN Viral/metabolismo , Thogotovirus/metabolismo , Transporte Activo de Núcleo Celular , Animales , Virus de la Enfermedad de Borna/genética , Humanos , Virus de la Influenza A/genética , Thogotovirus/genética
15.
Virus Res ; 67(1): 41-8, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10773317

RESUMEN

The ribonucleoprotein (RNP) complexes of Thogoto virus (THOV), a tick-borne orthomyxovirus, have been purified from detergent-lysed virions. The purified RNPs were then disrupted by centrifugation through a CsCl-glycerol gradient to obtain fractions highly enriched in nucleoprotein (NP) and virtually devoid of viral genomic RNA. When these NP-enriched fractions were incubated with a synthetic THOV-like RNA, and the mixtures were transfected into THOV-infected cells, the synthetic RNA was expressed and packaged into THOV particles. Similarly, hybrid mixtures containing purified THOV NP and influenza A virus synthetic RNAs (either a model CAT RNA or a gene encoding the viral neuraminidase), were prepared and transfected into influenza A virus-infected cells. The synthetic CAT RNA, was shown to be expressed and packaged into virus particles, and the neuraminidase gene was rescued into influenza virions. These data are discussed in terms of the similarities observed between THOV and influenza A virus and the potential application of the THOV purified proteins for rescuing synthetic genes into infectious viruses.


Asunto(s)
Virus de la Influenza A/metabolismo , ARN Viral/metabolismo , Thogotovirus/metabolismo , Proteínas del Núcleo Viral/metabolismo , Animales , Línea Celular , Cloranfenicol O-Acetiltransferasa/análisis , Cricetinae , Genes Virales/genética , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Neuraminidasa/genética , Neuraminidasa/metabolismo , Unión Proteica , Thogotovirus/genética , Thogotovirus/fisiología , Proteínas del Núcleo Viral/aislamiento & purificación , Proteínas Virales/análisis , Ensamble de Virus/fisiología
16.
Virus Res ; 50(2): 215-24, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9282786

RESUMEN

The tick-borne Thogoto virus (THOV) is the type species of a newly recognized fourth genus, Thogotovirus, in the family Orthomyxoviridae. Because of the distant relationship of THOV with the influenza viruses, determination of its genomic information can potentially be used to identify important domains in influenza virus proteins. We have determined the complete nucleotide sequence of the second longest RNA segment of THOV. The molecule comprises 2212 nucleotides with a single large open reading frame encoding a protein of 710 amino acids, estimated Mr 81,284. The protein shares 77% amino acid similarity with the PB1-like protein of Dhori virus, a related tick-borne virus, and 50-53% with the PB1 polymerase proteins of influenza virus A, B and C. All the motifs characteristic of RNA-dependent polymerases were identified including the SSDD motif common to all RNA-dependent RNA polymerases, indicating that the THOV protein is functionally analogous to the influenza virus PB1 proteins and involved in chain elongation. We also report the corrected sequence of the third longest RNA segment of THOV, encoding a protein which shares 44-47% amino acid similarity with the PA-like polymerase proteins of influenza virus A, B and C. The biological significance of conserved domains in these orthomyxovirid proteins is discussed.


Asunto(s)
Gammainfluenzavirus/enzimología , Orthomyxoviridae/enzimología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Thogotovirus/enzimología , Thogotovirus/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Núcleo Celular/virología , Cricetinae , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Gammainfluenzavirus/genética , Gammainfluenzavirus/metabolismo , Datos de Secuencia Molecular , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Thogotovirus/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
17.
Virology ; 331(1): 63-72, 2005 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-15582653

RESUMEN

The Thogoto virus (THOV) is a member of the family Orthomyxoviridae. It prevents induction of alpha/beta interferons (IFN) in cell culture and in vivo via the action of the viral ML protein. Phenotypically, the effect of THOV ML resembles that of the NS1 protein of influenza A virus (FLUAV) in that it blocks the expression of IFN genes. IFN expression depends on IFN regulatory factor 3 (IRF3). Upon activation, IRF3 forms homodimers and accumulates in the nucleus where it binds the transcriptional coactivator CREB-binding protein (CBP). Here, we show that expression of ML blocked the transcriptional activity of IRF3 after stimulation by virus infection. Further biochemical analysis revealed that ML acts by blocking IRF3 dimerization and association with CBP. Surprisingly, however, ML did not interfere with the nuclear transport of IRF3. Thus, the action of ML differs strikingly from that of FLUAV NS1 that prevents IFN induction by retaining IRF3 in the cytoplasm.


Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Regulación Viral de la Expresión Génica/fisiología , Thogotovirus/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Proteínas Virales/fisiología , Animales , Proteína de Unión a CREB , Núcleo Celular/metabolismo , Chlorocebus aethiops , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Humanos , Factor 3 Regulador del Interferón , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/fisiología , Unión Proteica , Thogotovirus/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Células Vero
18.
J Virol ; 76(11): 5729-36, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11992001

RESUMEN

GP64, the major envelope glycoprotein of budded virions of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), is involved in viral attachment, mediates membrane fusion during virus entry, and is required for efficient virion budding. Thus, GP64 is essential for viral propagation in cell culture and in animals. Recent genome sequences from a number of baculoviruses show that only a subset of closely related baculoviruses have gp64 genes, while other baculoviruses have a recently discovered unrelated envelope protein named F. F proteins from Lymantria dispar MNPV (LdMNPV) and Spodoptera exigua MNPV (SeMNPV) mediate membrane fusion and are therefore thought to serve roles similar to that of GP64. To determine whether F proteins are functionally analogous to GP64 proteins, we deleted the gp64 gene from an AcMNPV bacmid and inserted F protein genes from three different baculoviruses. In addition, we also inserted envelope protein genes from vesicular stomatitis virus (VSV) and Thogoto virus. Transfection of the gp64-null bacmid DNA into Sf9 cells does not generate infectious particles, but this defect was rescued by introducing either the F protein gene from LdMNPV or SeMNPV or the G protein gene from VSV. These results demonstrate that baculovirus F proteins are functionally analogous to GP64. Because baculovirus F proteins appear to be more widespread within the family and are much more divergent than GP64 proteins, gp64 may represent the acquisition of an envelope protein gene by an ancestral baculovirus. The AcMNPV pseudotyping system provides an efficient and powerful method for examining the functions and compatibilities of analogous or orthologous viral envelope proteins, and it could have important biotechnological applications.


Asunto(s)
Nucleopoliedrovirus/metabolismo , Proteínas Virales de Fusión/metabolismo , Animales , Línea Celular , Furina , Mariposas Nocturnas/virología , Nucleopoliedrovirus/genética , Spodoptera/citología , Subtilisinas , Thogotovirus/metabolismo , Proteínas Virales de Fusión/genética , Virión
19.
J Biol Chem ; 274(7): 4370-6, 1999 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-9933640

RESUMEN

Human MxA protein is an interferon-induced member of the dynamin superfamily of large GTPases. MxA inhibits the multiplication of several RNA viruses, including Thogoto virus, an influenza virus-like orthomyxovirus transmitted by ticks. Previous studies have indicated that GTP binding is required for antiviral activity, but the mechanism of action is still unknown. Here, we have used an in vitro cosedimentation assay to demonstrate, for the first time, a GTP-dependent interaction between MxA GTPase and a viral target structure. The assay is based on highly active MxA GTPase as effector molecules, Thogoto virus nucleocapsids as viral targets, and guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) as a stabilizing factor. We show that MxA tightly interacts with viral nucleocapsids by binding to the nucleoprotein component. This interaction requires the presence of GTPgammaS and is mediated by domains in the carboxyl-terminal moiety of MxA. We propose that GTP-bound MxA adopts an antivirally active conformation that allows interaction with viral nucleocapsids, thereby impairing their normal function.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Nucleocápside/metabolismo , Proteínas/metabolismo , Thogotovirus/metabolismo , Células 3T3 , Animales , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Leucina Zippers , Ratones , Proteínas de Resistencia a Mixovirus , Ribonucleoproteínas/metabolismo
20.
J Virol ; 74(1): 560-3, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10590150

RESUMEN

Human MxA protein accumulates in the cytoplasm of interferon-treated cells and inhibits the multiplication of several RNA viruses, including Thogoto virus (THOV), a tick-borne orthomyxovirus that transcribes and replicates its genome in the cell nucleus. The antiviral mechanism of MxA was investigated by using two alternative minireplicon systems in which recombinant viral ribonucleoprotein complexes (vRNPs) of THOV were reconstituted from cloned cDNAs. A chloramphenicol acetyltransferase reporter minigenome RNA was expressed either by T7 RNA polymerase in the cytoplasm of transfected cells or, alternatively, by RNA polymerase I in the nucleus. The inhibitory effect of MxA was studied in both cellular compartments by coexpressing wild-type MxA or TMxA, an artificial nuclear form of MxA. Our results indicate that both MxA proteins recognize the assembled vRNP rather than the newly synthesized unassembled components. The present findings are consistent with previous data which indicated that cytoplasmic MxA prevents transport of vRNPs into the nucleus, whereas nuclear MxA directly inhibits the viral polymerase activity in the nucleus.


Asunto(s)
GTP Fosfohidrolasas/fisiología , Proteínas de Unión al GTP , Regulación Viral de la Expresión Génica/fisiología , Genes Reporteros , Proteínas/fisiología , Ribonucleoproteínas/genética , Thogotovirus/metabolismo , Animales , Células COS , Cloranfenicol O-Acetiltransferasa/genética , Proteínas de Resistencia a Mixovirus , Fracciones Subcelulares/metabolismo , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda