Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Annu Rev Pharmacol Toxicol ; 62: 177-196, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34449246

RESUMEN

The cytosolic selenoprotein thioredoxin reductase 1 (TrxR1, TXNRD1), and to some extent mitochondrial TrxR2 (TXNRD2), can be inhibited by a wide range of electrophilic compounds. Many such compounds also yield cytotoxicity toward cancer cells in culture or in mouse models, and most compounds are likely to irreversibly modify the easily accessible selenocysteine residue in TrxR1, thereby inhibiting its normal activity to reduce cytosolic thioredoxin (Trx1, TXN) and other substrates of the enzyme. This leads to an oxidative challenge. In some cases, the inhibited forms of TrxR1 are not catalytically inert and are instead converted to prooxidant NADPH oxidases, named SecTRAPs, thus further aggravating the oxidative stress, particularly in cells expressing higher levels of the enzyme. In this review, the possible molecular and cellular consequences of these effects are discussed in relation to cancer therapy, with a focus on outstanding questions that should be addressed if targeted TrxR1 inhibition is to be further developed for therapeutic use.


Asunto(s)
Neoplasias , Tiorredoxina Reductasa 1 , Animales , Humanos , Ratones , Mitocondrias , Neoplasias/tratamiento farmacológico , Oxidación-Reducción , Especies Reactivas de Oxígeno , Selenocisteína/química , Selenocisteína/metabolismo , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/metabolismo
2.
Inorg Chem ; 60(5): 3181-3195, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33600154

RESUMEN

The action mechanism of anticancer gold(III) complexes is a multi-step process and depends on their redox stability. First, the gold(III) complex undergoes a ligand exchange reaction in the presence of cellular thiols, such as those available in the active site of the enzyme TrxR, and then, the AuIII → AuI reduction occurs. Most experimental and theoretical studies describe these processes under chemical conditions without considering the enzyme structure effect. In the present study, molecular models are proposed for the [AuIII(C^N^C)(SHCys-R)]+ adduct, with the [AuIII(C^N^C)]+ moiety bonded to the Cys498 residue in the C-terminal arm of the TrxR. This one represents the product of the first ligand exchange reaction. Overall, our results suggest that the exchange of the auxiliary ligand (for instance, Cl- to S-R) plays a primary role in increasing the reduction potential, with the enzyme structure having a small effect. The parent compound [AuIII(C^N^C)Cl] has E° = -1.20 V, which enlarges to -0.72 V for [AuIII(C^N^C)CH3SH]+ and to -0.65 V for the largest model studied, Au-trx. In addition to the effect of the enzyme structure on the redox stability, we also analyze the Au transfer to the enzyme using a small peptide model (a tetramer). This reaction is dependent on the Cys497 protonation state. Thermodynamics and kinetic analysis suggests that the C^N^C ligand substitution by Cys497 is an exergonic process, with an energy barrier estimated at 20.2 kcal mol-1. The complete transfer of the Au ion to the enzyme's active site would lead to a total loss of enzyme activity, generating oxidative damage and, consequently, cancer cell death.


Asunto(s)
Antineoplásicos/química , Complejos de Coordinación/química , Tiorredoxina Reductasa 1/química , Dominio Catalítico , Cisteína/química , Oro/química , Humanos , Cinética , Ligandos , Simulación de Dinámica Molecular , Oxidación-Reducción , Termodinámica
3.
J Biol Chem ; 292(35): 14371-14380, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28684416

RESUMEN

Regulation of growth factor signaling involves reversible inactivation of protein tyrosine phosphatases (PTPs) through the oxidation and reduction of their active site cysteine. However, there is limited mechanistic understanding of these redox events and their co-ordination in the presence of cellular antioxidant networks. Here we investigated interactions between PTP1B and the peroxiredoxin 2 (Prx2)/thioredoxin 1 (Trx1)/thioredoxin reductase 1 (TrxR1) network. We found that Prx2 becomes oxidized in PDGF-treated fibroblasts, but only when TrxR1 has first been inhibited. Using purified proteins, we also found that PTP1B is relatively insensitive to inactivation by H2O2 but found no evidence for a relay mechanism in which Prx2 or Trx1 facilitates PTP1B oxidation. Instead, these proteins prevented PTP1B inactivation by H2O2 Intriguingly, we discovered that TrxR1/NADPH directly protects PTP1B from inactivation when present during the H2O2 exposure. This protection was dependent on the concentration of TrxR1 and independent of Trx1 and Prx2. The protection was blocked by auranofin and required an intact selenocysteine residue in TrxR1. This activity likely involves reduction of the sulfenic acid intermediate form of PTP1B by TrxR1 and is therefore distinct from the previously described reactivation of end-point oxidized PTP1B, which requires both Trx1 and TrxR1. The ability of TrxR1 to directly reduce an oxidized phosphatase is a novel activity that can help explain previously observed increases in PTP1B oxidation and PDGF receptor phosphorylation in TrxR1 knockout cells. The activity of TrxR1 is therefore of potential relevance for understanding the mechanisms of redox regulation of growth factor signaling pathways.


Asunto(s)
NADP/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Animales , Auranofina/farmacología , Dominio Catalítico , Células Cultivadas , Dimerización , Embrión de Mamíferos/citología , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Oxidantes/farmacología , Oxidación-Reducción , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Ratas , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/genética , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
4.
Toxicol Appl Pharmacol ; 329: 58-66, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28551108

RESUMEN

Karenia brevis, the Florida red tide dinoflagellate produces a suite of neurotoxins known as the brevetoxins. The most abundant of the brevetoxins PbTx-2, was found to inhibit the thioredoxin-thioredoxin reductase system, whereas the PbTx-3 has no effect on this system. On the other hand, PbTx-2 activates the reduction of small disulfides such as 5,5'-dithio-bis-(2-nitrobenzoic acid) by thioredoxin reductase. PbTx-2 has an α, ß-unsaturated aldehyde moiety which functions as an efficient electrophile and selenocysteine conjugates are readily formed. PbTx-2 blocks the inhibition of TrxR by the inhibitor curcumin, whereas curcumin blocks PbTx-2 activation of TrxR. It is proposed that the mechanism of inhibition of thioredoxin reduction is via the formation of a Michael adduct between selenocysteine and the α, ß-unsaturated aldehyde moiety of PbTx-2. PbTx-2 had no effect on the rates of reactions catalyzed by related enzymes such as glutathione reductase, glutathione peroxidase or glutaredoxin.


Asunto(s)
Inhibidores Enzimáticos/toxicidad , Toxinas Marinas/toxicidad , Oxocinas/toxicidad , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Curcumina/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Dominios Proteicos , Ratas , Selenocisteína , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/metabolismo , Factores de Tiempo
5.
Proteins ; 84(12): 1836-1843, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27667125

RESUMEN

Thioredoxin reductase (TrxR) is an important enzyme in the control of the intracellular reduced redox environment. It transfers electrons from NADPH to several molecules, including its natural partner, thioredoxin. Although there is a generally accepted model describing how the electrons are transferred along TrxR, which involves a flexible arm working as a "shuttle," the molecular details of such mechanism are not completely understood. In this work, we use molecular dynamics simulations with Poisson-Boltzmann/Monte Carlo pKa calculations to investigate the role of electrostatics in the electron transfer mechanism. We observed that the combination of redox/protonation states of the N-terminal (FAD and Cys59/64) and C-terminal (Cys497/Selenocysteine498) redox centers defines the preferred relative positions and allows for the flexible arm to work as the desired "shuttle." Changing the redox/ionization states of those key players, leads to electrostatic triggers pushing the arm into the pocket when oxidized, and pulling it out, once it has been reduced. The calculated pKa values for Cys497 and Selenocysteine498 are 9.7 and 5.8, respectively, confirming that the selenocysteine is indeed deprotonated at physiological pH. This can be an important advantage in terms of reactivity (thiolate/selenolate are more nucleophilic than thiol/selenol) and ability to work as an electrostatic trigger (the "shuttle" mechanism) and may be the reason why TrxR uses selenium instead of sulfur. Proteins 2016; 84:1836-1843. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Coenzimas/química , Cisteína/química , Electrones , Flavina-Adenina Dinucleótido/química , Selenocisteína/química , Tiorredoxina Reductasa 1/química , Secuencias de Aminoácidos , Transporte de Electrón , Humanos , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Método de Montecarlo , Mutación , Oxidación-Reducción , Distribución de Poisson , Dominios Proteicos , Estructura Secundaria de Proteína , Electricidad Estática , Agua/química
6.
Inorg Chem ; 55(9): 4248-59, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-26866307

RESUMEN

The reactivity of three cytotoxic organometallic gold(III) complexes with cyclometalated C,N,N and C,N ligands (either six- or five-membered metallacycles), as well as that of two representative gold(III) complexes with N-donor ligands, with biological nucleophiles has been studied by ESI-MS on ion trap and time-of-flight instruments. Specifically, the gold compounds were reacted with mixtures of nucleophiles containing l-histidine (imine), l-methionine (thioether), l-cysteine (thiol), l-glutamic acid (carboxylic acid), methylseleno-l-cysteine (selenoether), and in situ generated seleno-l-cysteine (selenol) to judge the preference of the gold compounds for binding to selenium-containing amino acid residues. Moreover, the gold compounds' reactivity was studied with proteins and nucleic acid building blocks. These experiments revealed profound differences between the coordination and organometallic families and even within the family of organometallics, which allowed insights to be gained into the compounds mechanisms of action. In particular, interactions with seleno-l-cysteine appear to reflect well the compounds' inhibition properties of the seleno-enzyme thioredoxin reductase and to a certain extent their antiproliferative effects in vitro. Therefore, mass spectrometry is successfully applied for linking the molecular reactivity and target preferences of metal-based drug candidates to their biological effects. Finally, this experimental setup is applicable to any other metallodrug that undergoes ligand substitution reactions and/or redox changes as part of its mechanism of action.


Asunto(s)
Compuestos Orgánicos de Oro/química , Adenosina Trifosfato/química , Animales , Bovinos , Citocromos c/química , Estabilidad de Medicamentos , Guanina/análogos & derivados , Guanina/química , Guanosina Trifosfato/química , Caballos , Selenocisteína/análogos & derivados , Selenocisteína/química , Espectrometría de Masa por Ionización de Electrospray , Tiorredoxina Reductasa 1/química , Ubiquitina/química , Agua/química
7.
J Am Chem Soc ; 137(26): 8412-8, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26084190

RESUMEN

Gold nanoclusters (AuNCs) can be primed for biomedical applications through functionalization with peptide coatings. Often anchored by thiol groups, such peptide coronae not only serve as passivators but can also endow AuNCs with additional bioactive properties. In this work, we use molecular dynamics simulations to study the structure of a tridecapeptide-coated Au25 cluster and its subsequent interactions with the enzyme thioredoxin reductase 1, TrxR1. We find that, in isolation, both the distribution and conformation of the coating peptides fluctuate considerably. When the coated AuNC is placed around TrxR1, however, the motion of the highly charged peptide coating (+5e/peptide) is quickly biased by electrostatic attraction to the protein; the asymmetric coating acts to guide the nanocluster's diffusion toward the enzyme's negatively charged active site. After the AuNC comes into contact with TrxR1, its peptide corona spreads over the protein surface to facilitate stable binding with protein. Though individual salt bridge interactions between the tridecapeptides and TrxR1 are transient in nature, the cooperative binding of the peptide-coated AuNC is very stable, overall. Interestingly, the biased corona peptide motion, the spreading and the cooperation between peptide extensions observed in AuNC binding are reminiscent of bacterial stimulus-driven approaching and adhesion mechanisms mediated by cilia. The prevailing AuNC binding mode we characterize also satisfies a notable hydrophobic interaction seen in the association of thioredoxin to TrxR1, providing a possible explanation for the AuNC binding specificity observed in experiments. Our simulations thus suggest this peptide-coated AuNC serves as an adept thioredoxin mimic that extends an array of auxiliary structural components capable of enhancing interactions with the target protein in question.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Nanopartículas/química , Péptidos/química , Dominio Catalítico , Difusión , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Proteínas/química , Sales (Química)/química , Electricidad Estática , Compuestos de Sulfhidrilo , Tiorredoxina Reductasa 1/química , Tiorredoxinas/química
8.
Biochemistry ; 53(3): 554-65, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24393022

RESUMEN

Cytosolic thioredoxin reductase 1 (TR1) is the best characterized of the class of high-molecular weight (Mr) thioredoxin reductases (TRs). TR1 is highly dependent upon the rare amino acid selenocysteine (Sec) for the reduction of thioredoxin (Trx) and a host of small molecule substrates, as mutation of Sec to cysteine (Cys) results in a large decrease in catalytic activity for all substrate types. Previous work in our lab and others has shown that the mitochondrial TR (TR3) is much less dependent upon the use of Sec for the reduction of small molecules. The Sec-dependent substrate utilization behavior of TR1 may be the exception and not the rule as we show that a variety of high-Mr TRs from other organisms, including Drosophila melanogaster, Caenorhabditis elegans, and Plasmodium falciparum, do not require Sec to reduce small molecule substrates, including 5,5'-dithiobis(2-nitrobenzoic acid), lipoic acid, selenite, and selenocystine. The data show that high-Mr TRs can be divided into two groups based upon substrate utilization patterns: a TR1 group and a TR3-like group. We have constructed mutants of TR3-like enzymes from mouse, D. melanogaster, C. elegans, and P. falciparum, and the kinetic data from these mutants show that these enzymes are less dependent upon the use of Sec for the reduction of substrates. We posit that the mechanistic differences between TR1 and the TR3-like enzymes in this study are due to the presence of a "guiding bar", amino acids 407-422, found in TR1, but not TR3-like enzymes. The guiding bar, proposed by Becker and co-workers [Fritz-Wolf, K., Urig, S., and Becker, K. (2007) The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis. J. Mol. Biol. 370, 116-127], restricts the motion of the C-terminal tail containing the C-terminal Gly-Cys-Sec-Gly, redox active tetrapeptide so that only this C-terminal redox center can be reduced by the N-terminal redox center, with the exclusion of most other substrates. This makes TR1 highly dependent upon the use of Sec because the selenium atom is responsible for both accepting electrons from the N-terminal redox center and donating them to the substrate in this model. Loss of both Se-electrophilicity and Se-nucleophilicity in the Sec → Cys mutant of TR1 greatly reduces catalytic activity. TR3-like enzymes, in contrast, are less dependent upon the use of Sec because the absence of the guiding bar in these enzymes allows for greater access of the substrate to the N-terminal redox center and because they can make use of alternative mechanistic pathways that are not available to TR1.


Asunto(s)
Selenio/metabolismo , Selenocisteína/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Cistina/análogos & derivados , Cistina/metabolismo , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Humanos , Cinética , Ratones , Datos de Secuencia Molecular , Mutación , Compuestos de Organoselenio/metabolismo , Oxidación-Reducción , Selenocisteína/química , Alineación de Secuencia , Especificidad por Sustrato , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/genética , Reductasa de Tiorredoxina-Disulfuro
9.
J Biol Chem ; 288(14): 10002-10011, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23413027

RESUMEN

The human selenoprotein thioredoxin reductase 1 (TrxR1), encoded by the TXNRD1 gene, is a key player in redox regulation. Alternative splicing generates several TrxR1 variants, one of which is v3 that carries an atypical N-terminal glutaredoxin domain. When overexpressed, v3 associates with membranes and triggers formation of filopodia. Here we found that membrane targeting of v3 is mediated by myristoylation and palmitoylation of its N-terminal MGC motif, through which v3 specifically targets membrane rafts. This was suggested by its localization in cholera toxin subunit B-stained membrane areas and also shown using lipid fractionation experiments. Utilizing site-directed mutant variants, we also found that v3-mediated generation of filopodia is independent of the Cys residues in its redox active site, but dependent upon its membrane raft targeting. These results identify v3 as an intricately regulated protein that expands TXNRD1-derived protein functions to the membrane raft compartment.


Asunto(s)
Empalme Alternativo , Microdominios de Membrana/metabolismo , Oxidación-Reducción , Seudópodos/metabolismo , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/genética , Acilación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Línea Celular Tumoral , Cisteína/genética , Glutarredoxinas/química , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Lípidos/química , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
10.
Redox Biol ; 70: 103050, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38277963

RESUMEN

Thioredoxin reductase (TXNRD) is a selenoprotein that plays a crucial role in cellular antioxidant defense. Previously, a distinctive guiding bar motif was identified in TXNRD1, which influences the transfer of electrons. In this study, utilizing single amino acid substitution and Excitation-Emission Matrix (EEM) fluorescence spectrum analysis, we discovered that the guiding bar communicates with the FAD and modulates the electron flow of the enzyme. Differential Scanning Fluorimetry (DSF) analysis demonstrated that the aromatic amino acid in guiding bar is a stabilizer for TXNRD1. Kinetic analysis revealed that the guiding bar is vital for the disulfide reductase activity but hinders the selenocysteine-independent reduction activity of TXNRD1. Meanwhile, the guiding bar shields the selenocysteine residue of TXNRD1 from the attack of electrophilic reagents. We also found that the inhibition of TXNRD1 by caveolin-1 scaffolding domain (CSD) peptides and compound LCS3 did not bind to the guiding bar motif. In summary, the obtained results highlight new aspects of the guiding bar that restrict the flexibility of the C-terminal redox motif and govern the transition from antioxidant to pro-oxidant.


Asunto(s)
Tiorredoxina Reductasa 1 , Antioxidantes/metabolismo , Cinética , Oxidación-Reducción , Selenocisteína/metabolismo , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Humanos
11.
Biochem J ; 447(1): 167-74, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22784015

RESUMEN

Thiophosphate (SPO(3)) was recently shown to promote cysteine insertion at Sec (selenocysteine)-encoding UGA codons during selenoprotein synthesis. We reported previously that irreversible targeting by cDDP [cis-diamminedichloroplatinum(II) or cisplatin] of the Sec residue in TrxR1 (thioredoxin reductase 1) contributes to cDDP cytotoxicity. This effect could possibly be attenuated in cells expressing less reactive Sec-to-cysteine-substituted TrxR1 variants, or pronounced in cells with higher levels of Sec-containing TrxR1. To test this, we supplemented cells with either SPO(3) or selenium and subsequently determined total as well as specific activities of cellular TrxR1, together with extent of drug-induced cell death. We found that cDDP became less cytotoxic after incubation of A549 or HCT116 cells with lower SPO(3) concentrations (100-300 µM), whereas higher SPO(3) (>300 µM) had pronounced direct cytotoxicity. NIH 3T3 cells showed low basal TrxR1 activity and high susceptibility to SPO(3) cytotoxicity, or to glutathione depletion. Supplementing NIH 3T3 cells with selenite, however, gave increased cellular TrxR1 activity with concomitantly decreased dependence on glutathione, whereas the susceptibility to cDDP increased. The results suggest molecular mechanisms by which the selenium status of cells can affect their glutathione dependence while modulating the cytotoxicity of drugs that target TrxR1.


Asunto(s)
Muerte Celular/efectos de los fármacos , Cisplatino/farmacología , Glutatión/metabolismo , Fosfatos/farmacología , Selenito de Sodio/farmacología , Tiorredoxina Reductasa 1/metabolismo , Animales , Muerte Celular/fisiología , Línea Celular Tumoral , Cisteína/química , Dinitroclorobenceno/farmacología , Células HCT116 , Humanos , Ratones , Células 3T3 NIH , Ratas , Selenocisteína/química , Tiorredoxina Reductasa 1/química
12.
Biochem J ; 430(2): 285-93, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20536427

RESUMEN

The classical Trx (thioredoxin) system, composed of TR (Trx reductase), Trx and NADPH, defines a major pathway of cellular thiol-based redox regulation. Three TRs have been identified in mammals: (i) cytosolic TR1, (ii) mitochondrial TR3 and (iii) testes-specific TGR (Trx-glutathione reductase). All three are selenocysteine-containing enzymes with broad substrate specificity in in vitro assays, but which protein substrates are targeted by TRs in vivo is not well understood. In the present study, we used a mechanism-based approach to characterize the molecular targets of TR1. Cytosolic Trx1 was the major target identified in rat and mouse liver, as well as in rat brain and mouse serum. The results suggest that the main function of TR1 is to reduce Trx1. We also found that TR1-based affinity resins provide a convenient tool for specific isolation of Trxs from a variety of biological samples. To better assess the role of TRs in redox homoeostasis, we comparatively analysed TR1- and TR3-knockdown cells. Although cells deficient in TR1 were particularly sensitive to diamide, TR3-knockdown cells were more sensitive to hydrogen peroxide. To further examine the TR1-Trx1 redox pair, we used mice with a liver-specific knockout of selenocysteine tRNA. In this model, selenocysteine insertion into TR1 was blocked, but the truncated form of this protein was not detected. Instead, TR1 and TR3 levels were decreased in the knockout samples. Diminished hepatic TR1 function was associated with elevated Trx1 levels, but this protein was mostly in the oxidized state. Overall, this study provides evidence for the key role of the TR1-Trx1 pair in redox homoeostasis.


Asunto(s)
Homeostasis , Tiorredoxina Reductasa 1/metabolismo , Tiorredoxinas/metabolismo , Animales , Humanos , Hígado/química , Hígado/metabolismo , Ratones , Ratones Noqueados , Conformación Molecular , Células 3T3 NIH , Oxidación-Reducción , Estrés Oxidativo , Unión Proteica , Ratas , Especificidad por Sustrato , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/genética , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/genética
13.
Nat Commun ; 12(1): 1296, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637753

RESUMEN

Despite the immense importance of enzyme-substrate reactions, there is a lack of general and unbiased tools for identifying and prioritizing substrate proteins that are modified by the enzyme on the structural level. Here we describe a high-throughput unbiased proteomics method called System-wide Identification and prioritization of Enzyme Substrates by Thermal Analysis (SIESTA). The approach assumes that the enzymatic post-translational modification of substrate proteins is likely to change their thermal stability. In our proof-of-concept studies, SIESTA successfully identifies several known and novel substrate candidates for selenoprotein thioredoxin reductase 1, protein kinase B (AKT1) and poly-(ADP-ribose) polymerase-10 systems. Wider application of SIESTA can enhance our understanding of the role of enzymes in homeostasis and disease, opening opportunities to investigate the effect of post-translational modifications on signal transduction and facilitate drug discovery.


Asunto(s)
Enzimas/química , Enzimas/metabolismo , Procesamiento Proteico-Postraduccional , Carcinoma , Descubrimiento de Drogas , Enzimas/genética , Células HCT116 , Humanos , Espectrometría de Masas , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especificidad por Sustrato , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/genética
14.
Biochim Biophys Acta ; 1794(1): 124-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18930846

RESUMEN

Thioredoxin reductase (TrxR) is a member of the pyridine nucleotide-disulfide oxidoreductase family of the flavoenzymes. It can use a dithiol-disulfide active-site to transfer reducing equivalents from NADPH to thioredoxin (Trx), via the cofactor FAD. In Saccharomyces cerevisiae, the cytoplasmic thioredoxin reductase Trr1 plays an important role in multiple cellular events under the control of transcription factor Yap1 and/or Rho5. Here we present the crystal structure of Trr1 at the resolution of 2.8 A, the first fungal TrxR structure. Structural analysis shows it shares a very similar overall structure to Escherichia coli TrxR. However, fine comparisons indicate some distinct differences at the Trx recognition sites. These differences might be responsible to the species-specific recognition of Trx, which has been demonstrated by previous biochemical assays.


Asunto(s)
Citoplasma/enzimología , Saccharomyces cerevisiae/enzimología , Tiorredoxina Reductasa 1/química , Tiorredoxinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/enzimología , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Tiorredoxina Reductasa 1/metabolismo , Tiorredoxinas/química
15.
Biochim Biophys Acta ; 1793(10): 1588-96, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19654027

RESUMEN

Thioredoxin reductases are important selenoproteins maintaining cellular redox balance and regulating several redox dependent processes in apoptosis, cell proliferation and differentiation. Specific functions of dedicated splice variants may add further complexity to the functions of these proteins. We show here that a splice variant of human thioredoxin reductase 1, TXNRD1_v3, forms both dynamic cytoplasmic filaments and provokes instantaneous formation of dynamic cell membrane protrusions identified as filopodia. Using truncated versions of the protein we found that both the cytoplasmic filaments and the filopodia formation were exclusively dependent on the glutaredoxin domain of the protein. Interestingly, actin polymerization was required for filopodia formation triggered by TXNRD1_v3, but not for generation of cytoplasmic filaments. We conclude that the glutaredoxin domain of TXNRD1_v3 is an atypical regulator of the cell cytoskeleton that potently induces formation of highly ordered cytoplasmic filaments and cell membrane filopodia.


Asunto(s)
Citoesqueleto/metabolismo , Seudópodos/metabolismo , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/metabolismo , Actinas/química , Actinas/metabolismo , Empalme Alternativo , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopía Fluorescente , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tiorredoxina Reductasa 1/genética
16.
FASEB J ; 23(8): 2394-402, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19351701

RESUMEN

Selenium is an essential micronutrient for humans and animals, and its deficiency can predispose to the development of pathological conditions. This study evaluates the effect of selenium deficiency on the thioredoxin system, consisting of NADPH, selenoprotein thioredoxin reductase (TrxR), and thioredoxin (Trx); and the glutathione system, including NADPH, glutathione reductase, glutathione, and glutaredoxin coupled with selenoprotein glutathione peroxidase (GPx). We particularly investigate whether inactive truncated TrxR is present under selenium-starvation conditions due to reading of the UGA codon as stop. Feeding rats a selenium-deficient diet resulted in a large decrease in activity of TrxR and GPx in rat liver but not in the levels of Trx1 and Grx1. However, selenium deficiency induced mitochondrial Grx2 10-fold and markedly changed the expression of some flavoproteins that are involved in the cellular folate, glucose, and lipid metabolism. Liver TrxR mRNA was nearly unchanged, but no truncated enzyme was found. Instead, a low-activity form of TrxR with a cysteine substituted for the penultimate selenocysteine in the C-terminal active site was identified in selenium-deficient rat liver. These results show a novel mechanism for decoding the UGA stop codon, inserting cysteine to make a full-length enzyme that may be required for selenium assimilation.


Asunto(s)
Hígado/enzimología , Selenio/deficiencia , Selenocisteína/química , Tiorredoxina Reductasa 1/química , Secuencia de Aminoácidos , Animales , Codón de Terminación/genética , Cisteína/química , Retroalimentación Fisiológica , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Masculino , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tiorredoxina Reductasa 1/genética , Tiorredoxina Reductasa 1/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
17.
Sci Adv ; 6(1): eaax8358, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31911946

RESUMEN

Irreversible oxidation of Cys residues to sulfinic/sulfonic forms typically impairs protein function. We found that persulfidation (CysSSH) protects Cys from irreversible oxidative loss of function by the formation of CysSSO1-3H derivatives that can subsequently be reduced back to native thiols. Reductive reactivation of oxidized persulfides by the thioredoxin system was demonstrated in albumin, Prx2, and PTP1B. In cells, this mechanism protects and regulates key proteins of signaling pathways, including Prx2, PTEN, PTP1B, HSP90, and KEAP1. Using quantitative mass spectrometry, we show that (i) CysSSH and CysSSO3H species are abundant in mouse liver and enzymatically regulated by the glutathione and thioredoxin systems and (ii) deletion of the thioredoxin-related protein TRP14 in mice altered CysSSH levels on a subset of proteins, predicting a role for TRP14 in persulfide signaling. Furthermore, selenium supplementation, polysulfide treatment, or knockdown of TRP14 mediated cellular responses to EGF, suggesting a role for TrxR1/TRP14-regulated oxidative persulfidation in growth factor responsiveness.


Asunto(s)
Cisteína/genética , Oxidación-Reducción/efectos de los fármacos , Tiorredoxina Reductasa 1/genética , Tiorredoxinas/genética , Animales , Cisteína/química , Factor de Crecimiento Epidérmico/genética , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Ratones , Fosfohidrolasa PTEN/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Selenio/farmacología , Transducción de Señal/efectos de los fármacos , Sulfuros/metabolismo , Sulfuros/farmacología , Tiorredoxina Reductasa 1/química , Tiorredoxinas/química
18.
Eur J Med Chem ; 181: 111580, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400708

RESUMEN

A series of peptidomimetic compounds incorporating an electrophilic moiety was synthesized using the Ugi reaction. These compounds (termed the Ugi Michael acceptors or UMAs) were designed to target the selenocysteine catalytic residue of thioredoxin reductase 1 (TrxR1), a promising cancer target. The compounds were assessed for their potential to inhibit TrxR1 using human neuroblastoma (SH-SY5Y) cell lysate. Based on this initial screening, six compounds were selected for testing against recombinant rat TrxR1 and in the insulin assay to reveal low-micromolar to submicromolar potency of these inhibitors. The same frontrunner compounds were evaluated for their ability to exert antiproliferative activity and induce cell death and this activity was compared to the UMA effects on the levels of reactive oxygen and nitrogen species (RONS). Collectively, the UMA compounds class presented itself as a rich source of leads for TrxR1 inhibitor discovery for anticancer application. Compound 7 (DVD-445) was nominated a lead for further optimization.


Asunto(s)
Amidas/farmacología , Antineoplásicos/farmacología , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Tiorredoxinas/metabolismo , Amidas/química , Antineoplásicos/química , Dominio Catalítico/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/metabolismo , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/metabolismo
19.
Eur J Pharmacol ; 855: 112-123, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31059712

RESUMEN

Daucosterol (DS) is a plant phytosterol which is shown to induce oxidative stress mediated apoptosis in various cancer cell lines. However, the molecular mechanism underlying its cellular action has not been documented against Non- Small Cell Lung Cancer (NSCLC). Therefore, we attempted to decipher the mechanisms responsible for DS-induced anti-proliferation on human NSCLC cells. The present study showed, DS strongly inhibits the growth of A549 cells after 72 h time point with an IC50 value of ∼20.9 µM. Further DS elicits increased reactive oxygen species level and promote intrinsic apoptotic cell death on A549 cells as evidenced by increased expression of caspase-3, caspase-9, Bax, PARP inactivation, cytochrome-c release, and diminished expression of bcl-2 protein. DS failed to display its apoptotic actions upon pretreatment with the reactive oxygen species inhibitor NAC (N-acetyl cysteine). Indeed, apoptotic signal which was enhanced through p53/p21 activation and knockdown of p53 expression also moderately affected the DS induced apoptosis. In addition, DS preferentially inhibited the cell growth of p53 wild-type NSCLC cell lines than the mutant p53 models. Further, we show that inhibition of Thioredoxin (TrxR) redox system is principally associated with DS induced oxidative stress mediated apoptotic cell death on A549 cells. Moreover, we also demonstrated that DS stably interacted with serine residues in TrxR active sites. The obtained results confirmed that the anti-proliferative mechanism and increased reactive oxygen species level of DS was associated with down-regulation of TrxR1 pathway which triggers the p53 mediated intrinsic apoptotic mode of cell death in NSCLC cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Homeostasis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sitoesteroles/farmacología , Tiorredoxina Reductasa 1/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Regulación hacia Abajo/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Oxidación-Reducción/efectos de los fármacos , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sitoesteroles/metabolismo , Termodinámica , Tiorredoxina Reductasa 1/química
20.
Redox Biol ; 21: 101061, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30590310

RESUMEN

Gastric cancer is one of the leading causes of cancer-related deaths. Chemotherapy has improved long-term survival of patients with gastric cancer. Unfortunately, cancer readily develops resistance to apoptosis-inducing agents. New mechanisms, inducing caspase-independent paraptosis-like cell death in cancer cells is presently emerging as a potential direction. We previously developed a curcumin analog B63 as an anti-cancer agent in pre-clinical evaluation. In the present study, we evaluated the effect and mechanism of B63 on gastric cancer cells. Our studies show that B63 targets TrxR1 protein and increases cellular reactive oxygen species (ROS) level, which results in halting gastric cancer cells and inducing caspase-independent paraptotic modes of death. The paraptosis induced by B63 was mediated by ROS-mediated ER stress and MAPK activation. Either overexpression of TrxR1 or suppression of ROS normalized B63-induced paraptosis in gastric cancer cells. Furthermore, B63 caused paraptosis in 5-fluorouracil-resistant gastric cancer cells, and B63 treatment reduced the growth of gastric cancer xenografts, which was associated with increased ROS and paraptosis. Collectively, our findings provide a novel strategy for the treatment of gastric cancer by utilizing TrxR1-mediated oxidative stress generation and subsequent cell paraptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Curcumina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/metabolismo , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/química , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Modelos Biológicos , Modelos Moleculares , Terapia Molecular Dirigida , Estrés Oxidativo/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Relación Estructura-Actividad , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda