Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Plant J ; 118(5): 1400-1412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38415961

RESUMEN

In eukaryotic organisms, proteins are typically translated from monocistronic messenger RNAs containing a single coding sequence (CDS). However, recent long transcript sequencing identified 87 nuclear polycistronic mRNAs in Chlamydomonas reinhardtii natively carrying multiple co-expressed CDSs. In this study, we investigated the dynamics of 22 short intergenic sequences derived from these native polycistronic loci by their application in genetic constructs for synthetic transgene expression. A promising candidate sequence was identified based on the quantification of transformation efficiency and expression strength of a fluorescence reporter protein. Subsequently, the expression of independent proteins from one mRNA was verified by cDNA amplification and protein molecular mass characterization. We demonstrated engineered bicistronic expression in vivo to drive successful co-expression of several terpene synthases with the selection marker aphVIII. Bicistronic transgene design resulted in significantly increased (E)-α-bisabolene production of 7.95 mg L-1 from a single open reading frame, 18.1× fold higher than previous reports. Use of this strategy simplifies screening procedures for identification of high-level expressing transformants, does not require the application of additional fluorescence reporters, and reduces the nucleotide footprint compared to classical monocistronic expression cassettes. Although clear advantages for bicistronic transgene expression were observed, this strategy was found to be limited to the aphVIII marker, and further studies are necessary to gain insights into the underlying mechanism that uniquely permits this co-expression from the algal nuclear genome.


Asunto(s)
Chlamydomonas reinhardtii , Transgenes , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Plantas Modificadas Genéticamente/genética
2.
Biochem J ; 481(12): 779-791, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38829839

RESUMEN

ent-Kaurene is a biosynthetic intermediate diterpene of phytohormone gibberellins, and is biosynthesized from geranylgeranyl diphosphate via ent-copalyl diphosphate (ent-CDP). The successive cyclization is catalyzed by two distinct diterpene synthases, ent-CDP synthase (ent-CPS) and ent-kaurene synthase (KS). Homologs of these diterpene synthase genes have been reported to be involved in the biosynthesis of specialized-metabolic diterpenoids for defense in several plant species, including rice (Oryza sativa). These diterpene synthases consist of three domains, αßγ domains. Active sites of ent-CPS exist at the interface of ß and γ domain, while those of KS are located within the α domain. We herein carried out domain-deletion experiments using several KSs and KS like enzymes (KSLs) to obtain insights into the roles of domains other than active-site domains. As previously reported in taxadiene synthase, deletion of γ or ßγ domains drastically decreased activities of specialized-metabolic OsKSL5, OsKSL8, OsKSL7 and OsKSL10 in O. sativa. However, unexpectedly, only α domains of several gibberellin-biosynthetic KSs, including OsKS1 in O. sativa, AtKS in Arabidopsis thaliana, TaKS in wheat (Triticum aestivum) and BdKS1 in Brachypodium distachyon, retained their original functions. Additionally, the specialized-metabolic OsKSL4, which is closely related to OsKS1, also functioned without its ßγ domains. Domain-swapping experiments showed that replacing ßγ domains in OsKSL7 with those from other KS/KSLs retained the OsKSL7 activity. Moreover, deletion of ßγ domains of bifunctional PpCPS/KS in moss (Physcomitrella patens) drastically impaired its KS-related activity. Thus, we demonstrate that monofunctional gibberellin-biosynthetic KSs are the unique diterpene synthases that retain their functions without ßγ domains.


Asunto(s)
Transferasas Alquil y Aril , Giberelinas , Oryza , Proteínas de Plantas , Giberelinas/metabolismo , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/química , Oryza/enzimología , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Dominio Catalítico , Diterpenos de Tipo Kaurano/metabolismo , Diterpenos de Tipo Kaurano/química , Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/metabolismo , Diterpenos/metabolismo , Diterpenos/química , Dominios Proteicos , Catálisis
3.
BMC Genomics ; 25(1): 593, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867153

RESUMEN

BACKGROUND: Terpenes are important components of plant aromas, and terpene synthases (TPSs) are the key enzymes driving terpene diversification. In this study, we characterized the volatile terpenes in five different Chrysanthemum nankingense tissues. In addition, genome-wide identification and expression analysis of TPS genes was conducted utilizing an improved chromosome-scale genome assembly and tissue-specific transcriptomes. The biochemical functions of three representative TPSs were also investigated. RESULTS: We identified tissue-specific volatile organic compound (VOC) and volatile terpene profiles. The improved Chrysanthemum nankingense genome assembly was high-quality, including a larger assembled size (3.26 Gb) and a better contig N50 length (3.18 Mb) compared to the old version. A total of 140 CnTPS genes were identified, with the majority representing the TPS-a and TPS-b subfamilies. The chromosomal distribution of these TPS genes was uneven, and 26 genes were included in biosynthetic gene clusters. Closely-related Chrysanthemum taxa were also found to contain diverse TPS genes, and the expression profiles of most CnTPSs were tissue-specific. The three investigated CnTPS enzymes exhibited versatile activities, suggesting multifunctionality. CONCLUSIONS: We systematically characterized the structure and diversity of TPS genes across the Chrysanthemum nankingense genome, as well as the potential biochemical functions of representative genes. Our results provide a basis for future studies of terpene biosynthesis in chrysanthemums, as well as for the breeding of improved chrysanthemum varieties.


Asunto(s)
Transferasas Alquil y Aril , Chrysanthemum , Genoma de Planta , Familia de Multigenes , Terpenos , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Chrysanthemum/genética , Chrysanthemum/enzimología , Terpenos/metabolismo , Filogenia , Compuestos Orgánicos Volátiles/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
4.
BMC Plant Biol ; 24(1): 734, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085786

RESUMEN

BACKGROUND: Isopentenyltransferases (IPT) serve as crucial rate-limiting enzyme in cytokinin synthesis, playing a vital role in plant growth, development, and resistance to abiotic stress. RESULTS: Compared to the wild type, transgenic creeping bentgrass exhibited a slower growth rate, heightened drought tolerance, and improved shade tolerance attributed to delayed leaf senescence. Additionally, transgenic plants showed significant increases in antioxidant enzyme levels, chlorophyll content, and soluble sugars. Importantly, this study uncovered that overexpression of the MtIPT gene not only significantly enhanced cytokinin and auxin content but also influenced brassinosteroid level. RNA-seq analysis revealed that differentially expressed genes (DEGs) between transgenic and wild type plants were closely associated with plant hormone signal transduction, steroid biosynthesis, photosynthesis, flavonoid biosynthesis, carotenoid biosynthesis, anthocyanin biosynthesis, oxidation-reduction process, cytokinin metabolism, and wax biosynthesis. And numerous DEGs related to growth, development, and stress tolerance were identified, including cytokinin signal transduction genes (CRE1, B-ARR), antioxidase-related genes (APX2, PEX11, PER1), Photosynthesis-related genes (ATPF1A, PSBQ, PETF), flavonoid synthesis genes (F3H, C12RT1, DFR), wax synthesis gene (MAH1), senescence-associated gene (SAG20), among others. CONCLUSION: These findings suggest that the MtIPT gene acts as a negative regulator of plant growth and development, while also playing a crucial role in the plant's response to abiotic stress.


Asunto(s)
Agrostis , Transferasas Alquil y Aril , Citocininas , Sequías , Hojas de la Planta , Senescencia de la Planta , Plantas Modificadas Genéticamente , Agrostis/genética , Agrostis/fisiología , Agrostis/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Plantas Modificadas Genéticamente/genética , Senescencia de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Fotosíntesis/genética , Genes de Plantas , Resistencia a la Sequía
5.
Planta ; 259(6): 146, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713242

RESUMEN

MAIN CONCLUSION: The combined transcriptome outcome provides an important clue to the regulatory cascade centering on lncRNA GARR2 and CPS2 gene in GA response. Long non-coding RNAs (lncRNAs) serve as regulatory components in transcriptional hierarchy governing multiple aspects of biological processes. Dissecting regulatory mechanisms underpinning tetracyclic diterpenoid gibberellin (GA) cascade holds both theoretical and applied significance. However, roles of lncRNAs in transcriptional modulation of GA pathway remain largely elusive. Gypsy retrotransposon-derived GIBBERELLIN RESPONSIVE lncRNA2 (GARR2) has been reported as GA-responsive maize lncRNA. Here a novel GARR2-edited line garr2-1 was identified, characteristic of GA-induced phenotype of increased seedling height and elongated leaf sheath. Transcriptome analysis indicated that transcriptional abundance of five genes [ent-copalyl diphosphate synthase2 (CPS2), ent-kaurene synthase4 (KS4), ent-kaurene synthase6 (KS6), ent-kaurene oxidase2 (KO2), and ent-kaurenoic acid oxidase1/Dwarf3 (KAO1/D3)] was elevated in garr2-1 for early steps of GA biosynthesis. Five GA biosynthetic genes as hub regulators were interlaced to shape regulatory network of GA response. Different transcriptome resources were integrated to discover common differentially expressed genes (DEGs) in the independent GARR2-edited lines GARR2KO and garr2-1. A total of 320 common DEGs were retrieved. These common DEGs were enriched in diterpenoid biosynthetic pathway. Integrative transcriptome analysis revealed the common CPS2 encoding the CPS enzyme that catalyzes the conversion of the precursor trans-geranylgeranyl diphosphate to ent-copalyl diphosphate. The up-regulated CPS2 supported the GA-induced phenotype of slender seedlings observed in the independent GARR2-edited lines GARR2KO and garr2-1. Our integrative transcriptome analysis uncovers common components of the GA pathway regulated by lncRNA GARR2. These common components, especially for the GA biosynthetic gene CPS2, provide a valuable resource for further delineating the underlying mechanisms of lncRNA GARR2 in GA response.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Giberelinas , ARN Largo no Codificante , Zea mays , Zea mays/genética , Zea mays/metabolismo , Giberelinas/metabolismo , ARN Largo no Codificante/genética , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Reguladores del Crecimiento de las Plantas/metabolismo
6.
Planta ; 260(1): 26, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861179

RESUMEN

MAIN CONCLUSION: CaTPS2 and CaTPS3 were significantly expressed in flowers of Curcuma alismatifolia 'Shadow' and demonstrated bifunctional enzyme activity, CaTPS2 generated linalool and nerolidol as products, and CaTPS3 catalyzed ß-myrcene and ß-farnesene formation. This study presents the discovery and functional characterization of floral terpene synthase (TPS) genes in Curcuma alismatifolia 'Shadow', a cultivar renowned for its unique fragrance. Addressing the gap in understanding the genetic basis of floral scent in this species, we identified eight TPS genes through comprehensive transcriptome sequencing. Among these, CaTPS2 and CaTPS3 were significantly expressed in floral tissues and demonstrated bifunctional enzyme activity corresponding to the major volatile compounds detected in 'Shadow'. Functional analyses, including in vitro assays complemented with rigorous controls and alternative identification methods, elucidated the roles of these TPS genes in terpenoid biosynthesis. In vitro studies were conducted via heterologous expression in E. coli, followed by purification of the recombinant protein using affinity chromatography, enzyme assays were performed with GPP/FPP as the substrate, and volatile products were inserted into the GC-MS for analysis. Partially purified recombinant protein of CaTPS2 catalyzed GPP and FPP to produce linalool and nerolidol, respectively, while partially purified recombinant protein of CaTPS3 generated ß-myrcene and ß-farnesene with GPP and FPP as substrates, respectively. Real-time quantitative PCR further validated the expression patterns of these genes, correlating with terpenoid accumulation in different plant tissues. Our findings illuminate the molecular mechanisms underpinning floral fragrance in C. alismatifolia and provide a foundation for future genetic enhancements of floral scent in ornamental plants. This study, therefore, contributes to the broader understanding of terpenoid biosynthesis in plant fragrances, paving the way for biotechnological applications in horticulture plant breeding.


Asunto(s)
Monoterpenos Acíclicos , Transferasas Alquil y Aril , Curcuma , Flores , Sesquiterpenos , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Flores/genética , Flores/enzimología , Flores/metabolismo , Sesquiterpenos/metabolismo , Monoterpenos Acíclicos/metabolismo , Curcuma/genética , Curcuma/enzimología , Curcuma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Terpenos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Filogenia , Odorantes
7.
New Phytol ; 242(6): 2586-2603, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38523234

RESUMEN

Nicotianamine (NA) plays a crucial role in transporting metal ions, including iron (Fe), in plants; therefore, NICOTIANAMINE SYNTHASE (NAS) genes, which control NA synthesis, are tightly regulated at the transcriptional level. However, the transcriptional regulatory mechanisms of NAS genes require further investigations. In this study, we determined the role of bZIP44 in mediating plant response to Fe deficiency stress by conducting transformation experiments and assays. bZIP44 positively regulated the response of Arabidopsis to Fe deficiency stress by interacting with MYB10 and MYB72 to enhance their abilities to bind at NAS2 and NAS4 promoters, thereby increasing NAS2 and NAS4 transcriptional levels and promote NA synthesis. In summary, the transcription activities of bZIP44, MYB10, and MYB72 were induced in response to Fe deficiency stress, which enhanced the interaction between bZIP44 and MYB10 or MYB72 proteins, synergistically activated the transcriptional activity of NAS2 and NAS4, promoted NA synthesis, and improved Fe transport, thereby enhancing plant tolerance to Fe deficiency stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Hierro , Estrés Fisiológico , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Hierro/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Estrés Fisiológico/genética
8.
J Exp Bot ; 75(11): 3322-3336, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38506421

RESUMEN

Modern tomatoes produce colorful mature fruits, but many wild tomato ancestors form green or gray green ripe fruits. Here, tomato cultivar 'Lvbaoshi' (LBS) that produces green ripe fruits was found to contain three recessive loci responsible for fruit development. The colorless peel of LBS fruits was caused by a 603 bp deletion in the promoter of SlMYB12. The candidate genes of the remaining two loci were identified as STAY-GREEN 1 (SlSGR1) and PHYTOENE SYNTHASE 1 (SlPSY1). SGR1 and PSY1 co-suppression by RNAi converted the pink fruits into green ripe fruits in transgenic plants. An amino acid change in PSY1 and a deletion in the promoter of SGR1 were also identified in several wild tomatoes bearing green or gray ripe fruits. Overexpression of PSY1 from green ripe fruit wild tomatoes in LBS plants could only partially rescue the green ripe fruit phenotype of LBS, and transgenic lines expressing ProSGR1::SGR1 from Solanum pennellii also failed to convert purple-flesh into red-flesh fruits. This work uncovers a novel regulatory mechanism by which SlMYB12, SlPSY1, and SlSGR1 control fruit color in cultivated and some wild tomato species.


Asunto(s)
Transferasas Alquil y Aril , Frutas , Geranilgeranil-Difosfato Geranilgeraniltransferasa , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Mutación , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Chemistry ; 30(31): e202304317, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38527951

RESUMEN

OILTS is a viral class I terpene synthase found from the giant virus Orpheovirus IHUMI-LCC2. It exhibits a unique structure and demonstrates high plasticity to metal cofactors, allowing it to biosynthesize different cyclic terpene frameworks. Notably, while OILTS produces only (+)-germacrene D-4-ol with the most common cofactor, Mg2+, it also biosynthesizes a different cyclic terpene, (+)-cubebol, with Mn2+, Co2+, or Ni2+, presenting a rare instance of cofactor-dependent enzyme catalysis. This is the first report of (+)-cubebol biosynthesis, to our knowledge. In addition, OILTS can uptake Zn2+ as a cofactor, which is uncommon among ordinary terpene synthases. These findings suggest that OILTS's functional plasticity may benefit the virus in diverse host environments, highlighting potential evolutionary implications.


Asunto(s)
Transferasas Alquil y Aril , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/química , Metales/química , Metales/metabolismo , Zinc/metabolismo , Zinc/química , Terpenos/metabolismo , Terpenos/química , Níquel/química , Níquel/metabolismo , Magnesio/metabolismo , Magnesio/química , Proteínas Virales/metabolismo , Proteínas Virales/química
10.
J Nat Prod ; 87(7): 1704-1713, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38990199

RESUMEN

Fungal secondary metabolite (SM) biosynthetic gene clusters (BGCs) containing dimethylallyltryptophan synthases (DMATSs) produce structurally diverse prenylated indole alkaloids with wide-ranging activities that have vast potential as human therapeutics. To discover new natural products produced by DMATSs, we mined the Department of Energy Joint Genome Institute's MycoCosm database for DMATS-containing BGCs. We found a DMATS BGC in Aspergillus homomorphus CBS 101889, which also contains a nonribosomal peptide synthetase (NRPS). This BGC appeared to have a previously unreported combination of genes, which suggested the cluster might make novel SMs. We refactored this BGC with highly inducible promoters into the model fungus Aspergillus nidulans. The expression of this refactored BGC in A. nidulans resulted in the production of eight tryptophan-containing diketopiperazines, six of which are new to science. We have named them homomorphins A-F (2, 4-8). Perhaps even more intriguingly, to our knowledge, this is the first discovery of C4-prenylated tryptophan-containing diketopiperazines and their derivatives. In addition, the NRPS from this BGC is the first described that has the ability to promiscuously combine tryptophan with either of two different amino acids, in this case, l-valine or l-allo-isoleucine.


Asunto(s)
Aspergillus nidulans , Aspergillus , Dicetopiperazinas , Péptido Sintasas , Triptófano , Triptófano/metabolismo , Triptófano/química , Dicetopiperazinas/química , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Aspergillus/química , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Estructura Molecular , Familia de Multigenes , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética
11.
Plant Cell Rep ; 43(2): 53, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315261

RESUMEN

KEY MESSAGE: Retromer protein AtVPS29 upregulates the SLY1 protein and downregulates the RGA protein, positively stimulating the development of the root meristematic zone, which indicates an important role of AtVPS29 in gibberellin signaling. In plants, the large retromer complex is known to play roles in multiple development processes, including cell polarity, programmed cell death, and root hair growth in Arabidopsis. However, many of its roles in plant development remain unknown. Here, we show that Arabidopsis trimeric retromer protein AtVPS29 (vacuolar protein sorting 29) modulates gibberellin signaling. The SLEEPY1 (SLY1) protein, known as a positive regulator of gibberellic acid (GA) signaling, exhibited lower abundance in vps29-3 mutants compared to wild-type (WT) plants. Conversely, the DELLA repressor protein, targeted by the E3 ubiquitin ligase SCF (Skp, Cullin, F-box) complex and acting as a negative regulator of GA signaling, showed increased abundance in vps29-3 mutants compared to WT. The vps29-3 mutants exhibited decreased sensitivity to exogenous GA supply in contrast to WT, despite an upregulation in the expression of GA receptor genes within the vps29-3 mutants. In addition, the expression of the GA synthesis genes was downregulated in vps29-3 mutants, implying that the loss of AtVPS29 causes the downregulation of GA synthesis and signaling. Furthermore, vps29-3 mutants exhibited a reduced meristematic zone accompanied by a decreased cell number. Together, these data indicate that AtVPS29 positively regulates SLY1-mediated GA signaling and plant growth.


Asunto(s)
Transferasas Alquil y Aril , Proteínas de Arabidopsis , Arabidopsis , Giberelinas , Proteínas de Transporte Vesicular , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Mutación , Proteínas Represoras/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo
12.
J Plant Res ; 137(3): 455-462, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38368590

RESUMEN

Pyrrolizidine alkaloids (PAs) are specialized metabolites that are produced by various plant families that act as defense compounds against herbivores. On the other hand, certain lepidopteran insects uptake and utilize these PAs as defense compounds against their predators and as precursors of their sex pheromones. Adult males of Parantica sita, a danaine butterfly, convert PAs into their sex pheromones. In early summer, P. sita swarms over the flowers of Myosotis scorpioides, which belongs to the family Boraginaceae. M. scorpioides produces PAs, but the organs in which PAs are produced and whether P. sita utilizes PAs in M. scorpioides are largely unknown. In the present study, we clarified that M. scorpioides accumulates retronecine-core PAs in N-oxide form in all organs, including flowers. We also identified two M. scorpioides genes encoding homospermidine synthase (HSS), a key enzyme in the PA biosynthetic pathway, and clarified that these genes are expressed in all organs where PAs accumulate. Phylogenetic analysis suggested that these two HSS genes were originated from gene duplication of deoxyhypusine synthase gene like other HSS genes in PA-producing plants. These results suggest that PAs are synthesized and accumulated in the flower of M. scorpioides and provide a possibility for a PA-mediated interaction between P. sita and M. scorpioides.


Asunto(s)
Boraginaceae , Flores , Filogenia , Alcaloides de Pirrolicidina , Alcaloides de Pirrolicidina/metabolismo , Flores/genética , Flores/metabolismo , Animales , Boraginaceae/metabolismo , Boraginaceae/genética , Boraginaceae/química , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética
13.
Ecotoxicol Environ Saf ; 280: 116545, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850709

RESUMEN

Isoprenoid metabolism and its derivatives took part in photosynthesis, growth regulation, signal transduction, and plant defense to biotic and abiotic stresses. However, how aluminum (Al) stress affects the isoprenoid metabolism and whether isoprenoid metabolism plays a vital role in the Citrus plants in coping with Al stress remain unclear. In this study, we reported that Al-treatment-induced alternation in the volatilization rate of monoterpenes (α-pinene, ß-pinene, limonene, α-terpinene, γ-terpinene and 3-carene) and isoprene were different between Citrus sinensis (Al-tolerant) and C. grandis (Al-sensitive) leaves. The Al-induced decrease of CO2 assimilation, maximum quantum yield of primary PSII photochemistry (Fv/Fm), the lower contents of glucose and starch, and the lowered activities of enzymes involved in the mevalonic acid (MVA) pathway and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway might account for the different volatilization rate of isoprenoids. Furthermore, the altered transcript levels of genes related to isoprenoid precursors and/or derivatives metabolism, such as geranyl diphosphate (GPP) synthase (GPPS) in GPP biosynthesis, geranylgeranyl diphosphate synthase (GGPPS), chlorophyll synthase (CHS) and GGPP reductase (GGPPR) in chlorophyll biosynthesis, limonene synthase (LS) and α-pinene synthase (APS) in limonene and α-pinene synthesis, respectively, might be responsible for the different contents of corresponding products in C. grandis and C. sinensis. Our data suggested that isoprenoid metabolism was involved in Al tolerance response in Citrus, and the alternation of some branches of isoprenoid metabolism could confer different Al-tolerance to Citrus species.


Asunto(s)
Aluminio , Monoterpenos Bicíclicos , Citrus , Limoneno , Fotosíntesis , Hojas de la Planta , Terpenos , Aluminio/toxicidad , Terpenos/metabolismo , Citrus/metabolismo , Citrus/efectos de los fármacos , Limoneno/metabolismo , Fotosíntesis/efectos de los fármacos , Monoterpenos Bicíclicos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Monoterpenos/metabolismo , Hemiterpenos/metabolismo , Ciclohexenos/metabolismo , Fosfatos de Azúcar/metabolismo , Butadienos/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Ácido Mevalónico/metabolismo , Monoterpenos Ciclohexánicos , Citrus sinensis/metabolismo , Citrus sinensis/efectos de los fármacos , Citrus sinensis/genética , Clorofila/metabolismo , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética , Volatilización
14.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126114

RESUMEN

Terpenoids play a crucial role in plant growth and development, as well as in regulating resistance mechanisms. Terpene synthase (TPS) serves as the final step in the synthesis process of terpenoids. However, a comprehensive bioinformatics analysis of the TPS gene family in Triticum plants had not previously been systematically undertaken. In this study, a total of 531 TPS members were identified in Triticum plants. The evolutionary tree divided the TPS proteins into five subfamilies: Group1, Group2, Group3, Group4, and Group5. The results of the duplication events analysis showed that TD and WGD were major driving forces during the evolution of the TPS family. The cis-element analysis showed that the TPS genes were related to plant growth and development and environmental stress. Moreover, the GO annotation displayed that the biological function of TPS was relatively conserved in wheat plants. The RNA-seq data showed that the rice and wheat TPS genes responded to low-temperature stress and exhibited significantly different expression patterns. This research shed light on the functions of TPSs in responding to abiotic stress and demonstrated their modulatory potential during root development. These findings provide a foundation for further and deeper investigation of the TPSs' functions in Triticum plants.


Asunto(s)
Transferasas Alquil y Aril , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Genoma de Planta , Oryza/genética , Oryza/crecimiento & desarrollo , Perfilación de la Expresión Génica
15.
Int J Mol Sci ; 25(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38791550

RESUMEN

Rice (Oryza sativa) is one of the most important crops for humans. The homologs of ent-kaurene synthase (KS) in rice, which are responsible for the biosynthesis of gibberellins and various phytoalexins, are identified by their distinct biochemical functions. However, the KS-Like (KSL) family's potential functions related to hormone and abiotic stress in rice remain uncertain. Here, we identified the KSL family of 19 species by domain analysis and grouped 97 KSL family proteins into three categories. Collinearity analysis of KSLs among Poaceae indicated that the KSL gene may independently evolve and OsKSL1 and OsKSL4 likely play a significant role in the evolutionary process. Tissue expression analysis showed that two-thirds of OsKSLs were expressed in various tissues, whereas OsKSL3 and OsKSL5 were specifically expressed in the root and OsKSL4 in the leaf. Based on the fact that OsKSL2 participates in the biosynthesis of gibberellins and promoter analysis, we detected the gene expression profiles of OsKSLs under hormone treatments (GA, PAC, and ABA) and abiotic stresses (darkness and submergence). The qRT-PCR results demonstrated that OsKSL1, OsKSL3, and OsKSL4 responded to all of the treatments, meaning that these three genes can be candidate genes for abiotic stress. Our results provide new insights into the function of the KSL family in rice growth and resistance to abiotic stress.


Asunto(s)
Transferasas Alquil y Aril , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oryza , Proteínas de Plantas , Estrés Fisiológico , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , Giberelinas/metabolismo , Oryza/genética , Oryza/enzimología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
16.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673998

RESUMEN

As one of the largest and most diverse classes of specialized metabolites in plants, terpenoids (oprenoid compounds, a type of bio-based material) are widely used in the fields of medicine and light chemical products. They are the most important secondary metabolites in coniferous species and play an important role in the defense system of conifers. Terpene synthesis can be promoted by regulating the expressions of terpene synthase genes, and the terpene biosynthesis pathway has basically been clarified in Pinus massoniana, in which there are multiple rate-limiting enzymes and the rate-limiting steps are difficult to determine, so the terpene synthase gene regulation mechanism has become a hot spot in research. Herein, we amplified a PmDXR gene (GenBank accession no. MK969119.1) of the MEP pathway (methyl-erythritol 4-phosphate) from Pinus massoniana. The DXR enzyme activity and chlorophyll a, chlorophyll b and carotenoid contents of overexpressed Arabidopsis showed positive regulation. The PmDXR gene promoter was a tissue-specific promoter and can respond to ABA, MeJA and GA stresses to drive the expression of the GUS reporter gene in N. benthamiana. The DXR enzyme was identified as a key rate-limiting enzyme in the MEP pathway and an effective target for terpene synthesis regulation in coniferous species, which can further lay the theoretical foundation for the molecularly assisted selection of high-yielding lipid germplasm of P. massoniana, as well as provide help in the pathogenesis of pine wood nematode disease.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pinus , Proteínas de Plantas , Trementina , Ácido Abscísico/metabolismo , Acetatos/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Vías Biosintéticas , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila/biosíntesis , Clorofila A/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Pinus/genética , Pinus/metabolismo , Pinus/parasitología , Pinus/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Terpenos/metabolismo , Trementina/química , Trementina/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2410-2421, 2024 May.
Artículo en Zh | MEDLINE | ID: mdl-38812142

RESUMEN

Sequential catalysis by ent-copalyl diphosphate(CPS) and ent-kaurene synthase(KS) is a critical step for plants to initiate the biosynthesis of gibberellin with geranylgeranyl pyrophosphate(GGPP) as the substrate. This study mined the transcriptome data of Stellera chamaejasme and cloned two key diterpene synthase genes, SchCPS and SchKS, involved in the gibberellin pathway. The two genes had the complete open reading frames of 2 595 bp and 1 701 bp, encoding two hydrophilic proteins composed of 864 and 566 amino acid residues and with the relative molecular mass of 97.9 kDa and 64.6 kDa and the theoretical isoelectric points of 5.61 and 6.12, respectively. Sequence comparison and phylogenetic tree showed that SchCPS contained LHS, PNV, and DxDD motifs conserved in the CPS family and was categorized in the TPS-c subfamily, while SchKS contained DDxxD, NSE/DTE and PIx motifs conserved in the KS family and was categorized in the TPS-e subfamily. Functional validation showed that SchCPS catalyzed the protonation and cyclization of GGPP to ent-CPP, while SchKS acted on ent-CPP dephosphorylation and re-cyclization to ent-kaurene. In this study, the full-length sequences of SchCPS and SchKS were cloned and functionally verified for the first time, which not only enriched the existing CPS and KS gene libraries but also laid a foundation for the cloning and biosynthesis pathway analysis of more genes involved in the synthesis of active components in S. chamaejasme.


Asunto(s)
Transferasas Alquil y Aril , Filogenia , Proteínas de Plantas , Thymelaeaceae , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/química , Thymelaeaceae/genética , Thymelaeaceae/enzimología , Thymelaeaceae/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Secuencia de Aminoácidos , Diterpenos de Tipo Kaurano/metabolismo , Diterpenos de Tipo Kaurano/química , Alineación de Secuencia , Clonación Molecular
18.
Angew Chem Int Ed Engl ; 63(27): e202401669, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651244

RESUMEN

cis-Prenyltransferases (cis-PTs) catalyze the sequential head-to-tail condensation of isopentenyl diphosphate (IPP) to allylic diphosphates, producing mixed E-Z prenyl diphosphates of varying lengths; however, the specific enzymes synthesizing cis-C25 prenyl diphosphates have not been identified. Herein, we present the discovery and characterization of a cis-geranylfarnesyl diphosphate synthase (ScGFPPS) from Streptomyces clavuligerus. This enzyme demonstrates high catalytic proficiency in generating six distinct cis-polyisoprenoids, including three C25 and three C20 variants. We determined the crystal structure of ScGFPPS. Additionally, we unveil the crystal structure of nerylneryl diphosphate synthase (NNPS), known for synthesizing an all-cis-C20 polyisoprenoid. Comparative structural analysis of ScGFPPS and NNPS has identified key differences that influence product specificity. Through site-directed mutagenesis, we have identified eight single mutations that significantly refine the selectivity of ScGFPPS for cis-polyisoprenoids. Our findings not only expand the functional spectrum of cis-PTs but also provide a structural comparison strategy in cis-PTs engineering.


Asunto(s)
Streptomyces , Streptomyces/enzimología , Streptomyces/genética , Ingeniería de Proteínas , Cristalografía por Rayos X , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Modelos Moleculares
19.
Angew Chem Int Ed Engl ; 63(19): e202401539, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38372063

RESUMEN

Mining of two multiproduct sesterterpene synthases from Lentzea atacamensis resulted in the identification of the synthases for lentzeadiene (LaLDS) and atacamatriene (LaATS). The main product of LaLDS (lentzeadiene) is a new compound, while one of the side products (lentzeatetraene) is the enantiomer of brassitetraene B and the other side product (sestermobaraene F) is known from a surprisingly distantly related sesterterpene synthase. LaATS produces six new compounds, one of which is the enantiomer of the known sesterterpene Bm1. Notably, for both enzymes the products cannot all be explained from one and the same starting conformation of geranylfarnesyl diphosphate, demonstrating the requirement of conformational flexibility of the substrate in the enzymes' active sites. For lentzeadiene an intriguing thermal [1,5]-sigmatropic rearrangement was discovered, reminiscent of the biosynthesis of vitamin D3. All enzyme reactions and the [1,5]-sigmatropic rearrangement were investigated through isotopic labeling experiments and DFT calculations. The results also emphasize the importance of conformational changes during terpene cyclizations.


Asunto(s)
Sesterterpenos , Terpenos , Terpenos/metabolismo , Terpenos/química , Sesterterpenos/química , Sesterterpenos/metabolismo , Conformación Molecular , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/química , Estereoisomerismo
20.
Angew Chem Int Ed Engl ; 63(21): e202400743, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38556463

RESUMEN

Terpene synthases (TPSs) catalyze the first step in the formation of terpenoids, which comprise the largest class of natural products in nature. TPSs employ a family of universal natural substrates, composed of isoprenoid units bound to a diphosphate moiety. The intricate structures generated by TPSs are the result of substrate binding and folding in the active site, enzyme-controlled carbocation reaction cascades, and final reaction quenching. A key unaddressed question in class I TPSs is the asymmetric nature of the diphosphate-(Mg2+)3 cluster, which forms a critical part of the active site. In this asymmetric ion cluster, two diphosphate oxygen atoms protrude into the active site pocket. The substrate hydrocarbon tail, which is eventually molded into terpenes, can bind to either of these oxygen atoms, yet to which is unknown. Herein, we employ structural, bioinformatics, and EnzyDock docking tools to address this enigma. We bring initial data suggesting that this difference is rooted in evolutionary differences between TPSs. We hypothesize that this alteration in binding, and subsequent chemistry, is due to TPSs originating from plants or microorganisms. We further suggest that this difference can cast light on the frequent observation that the chiral products or intermediates of plant and bacterial terpene synthases represent opposite enantiomers.


Asunto(s)
Transferasas Alquil y Aril , Biología Computacional , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/química , Plantas/metabolismo , Plantas/enzimología , Especificidad por Sustrato , Terpenos/metabolismo , Terpenos/química , Dominio Catalítico , Bacterias/enzimología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda