Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
1.
Plant Cell ; 35(2): 874-888, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36427255

RESUMEN

The endosperm is a nutritive tissue supporting embryo growth in flowering plants. Most commonly, the endosperm initially develops as a coenocyte (multinucleate cell) and then cellularizes. This process of cellularization is frequently disrupted in hybrid seeds generated by crosses between different flowering plant species or plants that differ in ploidy, resulting in embryo arrest and seed lethality. The reason for embryo arrest upon cellularization failure remains unclear. In this study, we show that triploid Arabidopsis thaliana embryos surrounded by uncellularized endosperm mount an osmotic stress response that is connected to increased levels of abscisic acid (ABA) and enhanced ABA responses. Impairing ABA biosynthesis and signaling aggravated triploid seed abortion, while increasing endogenous ABA levels as well as the exogenous application of ABA-induced endosperm cellularization and suppressed embryo growth arrest. Taking these results together, we propose that endosperm cellularization is required to establish dehydration tolerance in the developing embryo, ensuring its survival during seed maturation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Endospermo/genética , Endospermo/metabolismo , Proteínas de Arabidopsis/metabolismo , Triploidía , Deshidratación , Arabidopsis/metabolismo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
2.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38421617

RESUMEN

Polyploidy, a significant catalyst for speciation and evolutionary processes in both plant and animal kingdoms, has been recognized for a long time. However, the exact molecular mechanism that leads to polyploid formation, especially in vertebrates, is not fully understood. Our study aimed to elucidate this phenomenon using the zebrafish model. We successfully achieved an effective knockout of the cyclin N-terminal domain containing 1 (cntd1) using CRISPR/Cas9 technology. This resulted in impaired formation of meiotic crossovers, leading to cell-cycle arrest during meiotic metaphase and triggering apoptosis of spermatocytes in the testes. Despite these defects, the mutant (cntd1-/-) males were still able to produce a limited amount of sperm with normal ploidy and function. Interestingly, in the mutant females, it was the ploidy not the capacity of egg production that was altered. This resulted in the production of haploid, aneuploid, and unreduced gametes. This alteration enabled us to successfully obtain triploid and tetraploid zebrafish from cntd1-/- and cntd1-/-/- females, respectively. Furthermore, the tetraploid-heterozygous zebrafish produced reduced-diploid gametes and yielded all-triploid or all-tetraploid offspring when crossed with wild-type (WT) or tetraploid zebrafish, respectively. Collectively, our findings provide direct evidence supporting the crucial role of meiotic crossover defects in the process of polyploidization. This is particularly evident in the generation of unreduced eggs in fish and, potentially, other vertebrate species.


Asunto(s)
Triploidía , Pez Cebra , Masculino , Animales , Femenino , Tetraploidía , Semillas , Poliploidía , Ploidias
3.
Development ; 149(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35388415

RESUMEN

Obligate parthenogenesis evolved in reptiles convergently several times, mainly through interspecific hybridization. The obligate parthenogenetic complexes typically include both diploid and triploid lineages. Offspring of parthenogenetic hybrids are genetic copies of their mother; however, the cellular mechanism enabling the production of unreduced cells is largely unknown. Here, we show that oocytes go through meiosis in three widespread, or even strongly invasive, obligate parthenogenetic complexes of geckos, namely in diploid and triploid Lepidodactylus lugubris, and triploid Hemiphyllodactylus typus and Heteronotia binoei. In all four lineages, the majority of oocytes enter the pachytene at the original ploidy level, but their chromosomes cannot pair properly and instead form univalents, bivalents and multivalents. Unreduced eggs with clonally inherited genomes are formed from germ cells that had undergone premeiotic endoreplication, in which appropriate segregation is ensured by the formation of bivalents made from copies of identical chromosomes. We conclude that the induction of premeiotic endoreplication in reptiles was independently co-opted at least four times as an essential component of parthenogenetic reproduction and that this mechanism enables the emergence of fertile polyploid lineages within parthenogenetic complexes.


Asunto(s)
Lagartos , Animales , Diploidia , Endorreduplicación , Lagartos/genética , Partenogénesis/genética , Triploidía
4.
Plant Cell ; 34(3): 989-1001, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34792584

RESUMEN

The triploid block, which prevents interploidy hybridizations in flowering plants, is characterized by a failure in endosperm development, arrest in embryogenesis, and seed collapse. Many genetic components of triploid seed lethality have been successfully identified in the model plant Arabidopsis thaliana, most notably the paternally expressed genes (PEGs), which are upregulated in tetraploid endosperm with paternal excess. Previous studies have shown that the paternal epigenome is a key determinant of the triploid block response, as the loss of DNA methylation in diploid pollen suppresses the triploid block almost completely. Here, we demonstrate that triploid seed collapse is bypassed in Arabidopsis plants treated with the DNA methyltransferase inhibitor 5-Azacytidine during seed germination and early growth. We identified strong suppressor lines showing stable transgenerational inheritance of hypomethylation in the CG context, as well as normalized expression of PEGs in triploid seeds. Importantly, differentially methylated loci segregate in the progeny of "epimutagenized" plants, which may allow epialleles involved in the triploid block response to be identified in future studies. Finally, we demonstrate that chemically induced epimutagenesis facilitates hybridization between different Capsella species, thus potentially emerging as a strategy for producing triploids and interspecific hybrids with high agronomic interest.


Asunto(s)
Arabidopsis , Triploidía , Arabidopsis/genética , Diploidia , Endospermo/genética , Semillas/genética
5.
Genomics ; 116(3): 110832, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518898

RESUMEN

GCN2-eIF2α signaling pathway plays crucial roles in cell growth,development, and protein synthesis. However, in polyploid fish, the function of this pathway is rarely understood. In this study, genes associated with the GCN2-eIF2α pathway (pkr, pek, gcn2, eif2α) are founded lower expression levels in the triploid crucian carp (3nCC) muscle compared to that of the red crucian carp (RCC). In muscle effect stage embryos of the 3nCC, the mRNA levels of this pathway genes are generally lower than those of RCC, excluding hri and fgf21. Inhibiting gcn2 in 3nCC embryos downregulates downstream gene expression (eif2α, atf4, fgf21), accelerating embryonic development. In contrast, overexpressing of eif2α can alter the expression levels of downstream genes (atf4 and fgf21), and decelerates the embryonic development. These results demonstrate the GCN2-eIF2α pathway's regulatory impact on 3nCC growth, advancing understanding of fish rapid growth genetics and offering useful molecular markers for breeding of excellent strains.


Asunto(s)
Carpas , Factor 2 Eucariótico de Iniciación , Proteínas de Peces , Transducción de Señal , Animales , Carpas/genética , Carpas/metabolismo , Carpas/crecimiento & desarrollo , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Triploidía , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Regulación del Desarrollo de la Expresión Génica , Desarrollo Embrionario/genética
6.
Plant J ; 113(4): 802-818, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36575919

RESUMEN

Hybridizations between Musa species and subspecies, enabled by their transport via human migration, were proposed to have played an important role in banana domestication. We exploited sequencing data of 226 Musaceae accessions, including wild and cultivated accessions, to characterize the inter(sub)specific hybridization pattern that gave rise to cultivated bananas. We identified 11 genetic pools that contributed to cultivars, including two contributors of unknown origin. Informative alleles for each of these genetic pools were pinpointed and used to obtain genome ancestry mosaics of accessions. Diploid and triploid cultivars had genome mosaics involving three up to possibly seven contributors. The simplest mosaics were found for some diploid cultivars from New Guinea, combining three contributors, i.e., banksii and zebrina representing Musa acuminata subspecies and, more unexpectedly, the New Guinean species Musa schizocarpa. Breakpoints of M. schizocarpa introgressions were found to be conserved between New Guinea cultivars and the other analyzed diploid and triploid cultivars. This suggests that plants bearing these M. schizocarpa introgressions were transported from New Guinea and gave rise to currently cultivated bananas. Many cultivars showed contrasted mosaics with predominant ancestry from their geographical origin across Southeast Asia to New Guinea. This revealed that further diversification occurred in different Southeast Asian regions through hybridization with other Musa (sub)species, including two unknown ancestors that we propose to be M. acuminata ssp. halabanensis and a yet to be characterized M. acuminata subspecies. These results highlighted a dynamic crop formation process that was initiated in New Guinea, with subsequent diversification throughout Southeast Asia.


Asunto(s)
Genoma de Planta , Musa , Humanos , Genoma de Planta/genética , Musa/genética , Nueva Guinea , Triploidía , Hibridación Genética
7.
BMC Plant Biol ; 24(1): 391, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735929

RESUMEN

BACKGROUND: Unreduced gamete formation during meiosis plays a critical role in natural polyploidization. However, the unreduced gamete formation mechanisms in Triticum turgidum-Aegilops umbellulata triploid F1 hybrid crosses and the chromsome numbers and compostions in T. turgidum-Ae. umbellulata F2 still not known. RESULTS: In this study, 11 T.turgidum-Ae. umbellulata triploid F1 hybrid crosses were produced by distant hybridization. All of the triploid F1 hybrids had 21 chromosomes and two basic pathways of meiotic restitution, namely first-division restitution (FDR) and single-division meiosis (SDM). Only FDR was found in six of the 11 crosses, while both FDR and SDM occurred in the remaining five crosses. The chromosome numbers in the 127 selfed F2 seeds from the triploid F1 hybrid plants of 10 crosses (no F2 seeds for STU 16) varied from 35 to 43, and the proportions of euploid and aneuploid F2 plants were 49.61% and 50.39%, respectively. In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes. The chromosome loss of the U genome was the highest (26.77%) among the three genomes, followed by that of the B (22.83%) and A (11.81%) genomes, and the chromosome gain for the A, B, and U genomes was 3.94%, 3.94%, and 1.57%, respectively. Of the 21 chromosomes, 7U (16.54%), 5 A (3.94%), and 1B (9.45%) had the highest loss frequency among the U, A, and B genomes. In addition to chromosome loss, seven chromosomes, namely 1 A, 3 A, 5 A, 6 A, 1B, 1U, and 6U, were gained in the aneuploids. CONCLUSION: In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes, chromsomes, and crosses. In addition to variations in chromosome numbers, three types of chromosome translocations including 3UL·2AS, 6UL·1AL, and 4US·6AL were identified in the F2 plants. Furthermore, polymorphic fluorescence in situ hybridization karyotypes for all the U chromosomes were also identified in the F2 plants when compared with the Ae. umbellulata parents. These results provide useful information for our understanding the naturally occurred T. turgidum-Ae. umbellulata amphidiploids.


Asunto(s)
Aegilops , Inestabilidad Cromosómica , Cromosomas de las Plantas , Hibridación Genética , Triticum , Triticum/genética , Cromosomas de las Plantas/genética , Aegilops/genética , Meiosis/genética , Triploidía , Poliploidía , Genoma de Planta
8.
New Phytol ; 241(6): 2506-2522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38258389

RESUMEN

Although polyploid plants have lower stomatal density than their diploid counterparts, the molecular mechanisms underlying this difference remain elusive. Here, we constructed a network based on the triploid poplar transcriptome data and triple-gene mutual interaction algorithm and found that PpnMYC2 was related to stomatal development-related genes PpnEPF2, PpnEPFL4, and PpnEPFL9. The interactions between PpnMYC2 and PagJAZs were experimentally validated. PpnMYC2-overexpressing poplar and Arabidopsis thaliana had reduced stomatal density. Poplar overexpressing PpnMYC2 had higher water use efficiency and drought resistance. RNA-sequencing data of poplars overexpressing PpnMYC2 showed that PpnMYC2 promotes the expression of stomatal density inhibitors PagEPF2 and PagEPFL4 and inhibits the expression of the stomatal density-positive regulator PagEPFL9. Yeast one-hybrid system, electrophoretic mobility shift assay, ChIP-qPCR, and dual-luciferase assay were employed to substantiate that PpnMYC2 directly regulated PagEPF2, PagEPFL4, and PagEPFL9. PpnMYC2, PpnEPF2, and PpnEPFL4 were significantly upregulated, whereas PpnEPFL9 was downregulated during stomatal formation in triploid poplar. Our results are of great significance for revealing the regulation mechanism of plant stomatal occurrence and polyploid stomatal density, as well as reducing stomatal density and improving plant water use efficiency by overexpressing MYC2.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Populus , Agua/metabolismo , Triploidía , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estomas de Plantas/fisiología , Populus/metabolismo , Regulación de la Expresión Génica de las Plantas , Sequías , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética
9.
Mol Ecol ; 33(5): e17264, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38205506

RESUMEN

Elements transferred from a mother to her eggs may strongly influence the phenotype of her offspring. Such maternal effects depend on the genotype of the mother, and while multiple ploidy levels occur naturally in some vertebrate species, studies evaluating the impact of maternal ploidy on offspring are scarce. This paper aimed to test whether maternal ploidy is responsible for the two reproductive phenotypes observed in the triploid fish Chrosomus eos × eos-neogaeus. Indeed, these hybrids have two different maternal origins (diploid or triploid) and display two reproductive phenotypes, ameiotic and meiotic hybridogenesis, resulting in diploid and haploid eggs, respectively. To this end, we first conducted a genomic survey to identify epigenetic variations in triploid larvae reared under common garden conditions, concordantly with their maternal origin. The results revealed that the polymorphic epigenetic loci of the larvae clustered into two highly distinct groups consistently with the ploidy of their mother. Diagnostic epigenetic loci were then tested in triploid adult females whose reproductive pathways were already known, to infer their own maternal origin. Altogether, the results suggest that triploid larvae from diploid and triploid mothers will develop the ameiotic and meiotic hybridogenesis pathway, respectively. This confirms that the development of a given reproductive pathway in triploid females results from the ploidy of their mother. Overall, this study supports a strong maternal effect, introducing maternal ploidy and reproductive pathways as additional cause and effect of maternal effects, respectively.


Asunto(s)
Cyprinidae , Triploidía , Femenino , Animales , Hibridación Genética , Diploidia , Haploidia , Larva/genética
10.
Plant Physiol ; 192(3): 1821-1835, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37002827

RESUMEN

The relationships between aerial organ morpho-anatomy of woody polyploid plants with their functional hydraulics under water stress remain largely understudied. We evaluated growth-associated traits, aerial organ xylem anatomy, and physiological parameters of diploid, triploid, and tetraploid genotypes of atemoyas (Annona cherimola × Annona squamosa), which belong to the woody perennial genus Annona (Annonaceae), testing their performance under long-term soil water reduction. The contrasting phenotypes of vigorous triploids and dwarf tetraploids consistently showed stomatal size-density tradeoff. The vessel elements in aerial organs were ∼1.5 times wider in polyploids compared with diploids, and triploids displayed the lowest vessel density. Plant hydraulic conductance was higher in well-irrigated diploids while their tolerance to drought was lower. The phenotypic disparity of atemoya polyploids associated with contrasting leaf and stem xylem porosity traits that coordinate to regulate water balances between the trees and the belowground and aboveground environments. Polyploid trees displayed better performance under soil water scarcity, and consequently, could present more sustainable agricultural and forestry genotypes to cope with water stress.


Asunto(s)
Suelo , Árboles , Árboles/genética , Triploidía , Deshidratación , Hojas de la Planta/genética , Xilema/genética , Sequías , Tetraploidía
11.
Fish Shellfish Immunol ; 146: 109426, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316349

RESUMEN

Glutathione S-transferase P1 (GSTP1), the most ubiquitous member of the GST superfamily, plays vital roles in the detoxification, antioxidant defense, and modulation of inflammatory responses. However, limited studies have been conducted on the function of GSTP1 in antiviral innate immunity. In this study, we have cloned the homolog of GSTP1 in triploid hybrid crucian carp (3nGSTP1) and investigated its regulatory role in the interferon signaling pathway. The open reading frame of 3nGSTP1 is composed of 627 nucleotides, encoding 209 amino acids. In response to spring viremia of carp virus (SVCV) infection, the mRNA level of 3nGSTP1 was up-regulated in the liver, kidney, and caudal fin cell lines (3 nF C) of triploid fish. The knockdown of 3nGSTP1 in 3 nF C improved host cell's antiviral capacity and attenuated SVCV replication. Additionally, overexpression of 3nGSTP1 inhibited the activation of IFN promoters induced by SVCV infection, poly (I:C) stimulation, or the RLR signaling factors. The co-immunoprecipitation assays further revealed that 3nGSTP1 interacts with 3nMAVS. In addition, 3nGSTP1 dose-dependently inhibited 3nMAVS-mediated antiviral activity and reduced 3nMAVS protein level. Mechanistically, 3nGSTP1 promoted ubiquitin-proteasome degradation of MAVS by promoting its K48-linked polyubiquitination. To conclude, our results indicate that GSTP1 acts as a novel inhibitor of MAVS, which negatively regulates the IFN signaling.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Triploidía , Transducción de Señal , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/veterinaria , Inmunidad Innata/genética , Poli I-C/farmacología , Antivirales
12.
J Hered ; 115(3): 262-276, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38366660

RESUMEN

Geckos exhibit derived karyotypes without a clear distinction between macrochromosomes and microchromosomes and intriguing diversity in sex determination mechanisms. We conducted cytogenetic analyses in six species from the genera Nephrurus, Phyllurus, and Saltuarius of the gecko family Carphodactylidae. We confirmed the presence of a female heterogametic system with markedly differentiated and heteromorphic sex chromosomes in all examined species, typically with the W chromosome notably larger than the Z chromosome. One species, Nephrurus cinctus, possesses unusual multiple Z1Z1Z2Z2/Z1Z2W sex chromosomes. The morphology of the sex chromosomes, along with repetitive DNA content, suggests that the differentiation or emergence of sex chromosomes occurred independently in the genus Phyllurus. Furthermore, our study unveils a case of spontaneous triploidy in a fully grown individual of Saltuarius cornutus (3n = 57) and explores its implications for reproduction in carphodactylid geckos. We revealed that most carphodactylids retain the putative ancestral gekkotan karyotype of 2n = 38, characterized by predominantly acrocentric chromosomes that gradually decrease in size. If present, biarmed chromosomes emerge through pericentric inversions, maintaining the chromosome (and centromere) numbers. However, Phyllurus platurus is a notable exception, with a karyotype of 2n = 22 chromosomes. Its eight pairs of biarmed chromosomes were probably formed by Robertsonian fusions of acrocentric chromosomes. The family underscores a remarkable instance of evolutionary stability in chromosome numbers, followed by a profound transformation through parallel interchromosomal rearrangements. Our study highlights the need to continue generating cytogenetic data in order to test long-standing ideas about reproductive biology and the evolution of genome and sex determination.


Asunto(s)
Cariotipo , Lagartos , Cromosomas Sexuales , Triploidía , Animales , Lagartos/genética , Cromosomas Sexuales/genética , Femenino , Masculino , Evolución Molecular , Cariotipificación
13.
Acta Obstet Gynecol Scand ; 103(2): 351-359, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37986093

RESUMEN

INTRODUCTION: In this register-based study of pregnancies in Denmark, we assessed the associations between maternal age and the risk of fetal aneuploidies (trisomy 21, trisomy 18, trisomy 13, triploidy, monosomy X and other sex chromosome aberrations). Additionally, we aimed to disentangle the maternal age-related effect on fetal aneuploidies by cases with translocation trisomies and mosaicisms. MATERIAL AND METHODS: We followed a nationwide cohort of 542 375 singleton-pregnant women attending first trimester screening in Denmark between 2008 and 2017 until delivery, miscarriage or termination of pregnancy. We used six maternal age categories and retrieved information on genetically confirmed aneuploidies of the fetus and infant from the national cytogenetic register. RESULTS: We confirmed the known associations between advanced maternal age and higher risk of trisomy 21, 18, 13 and other sex chromosome aberrations, especially in women aged ≥35 years, whereas we found no age-related associations with triploidy or monosomy X. Cases with translocation trisomies and mosaicisms did not influence the overall reported association between maternal age and aneuploidies. CONCLUSION: This study provides insight into the accurate risk of fetal aneuploidies that pregnant women of advanced ages encounter.


Asunto(s)
Trastornos de los Cromosomas , Síndrome de Down , Síndrome de Turner , Femenino , Embarazo , Humanos , Edad Materna , Síndrome de Down/epidemiología , Síndrome de Down/genética , Síndrome de Down/diagnóstico , Trisomía/genética , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/epidemiología , Trastornos de los Cromosomas/genética , Diagnóstico Prenatal , Estudios de Cohortes , Triploidía , Aneuploidia , Aberraciones Cromosómicas Sexuales , Síndrome de la Trisomía 18/epidemiología , Feto , Mosaicismo , Dinamarca/epidemiología
14.
Biosci Biotechnol Biochem ; 88(4): 412-419, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38412471

RESUMEN

The regeneration of shoots from endosperm tissue is a highly effective method to obtain triploid plants. In this study, we elucidated the establishment of an in vitro regeneration system from endosperm culture for the production of Passiflora edulis "Mantianxing." The highest callus induction rate (83.33%) was obtained on the media supplemented with 1.0 mg/L TDZ. Meanwhile, the MS medium containing 1.0 mg/L 6-BA and 0.4 mg/L IBA gave the optimum 75% shoot bud induction. Chromosome analysis revealed that the chromosomal count of P. edulis "Mantianxing" regenerated from endosperm tissues was 27 (2n = 3x = 27), which indicated that shoots regenerated from endosperm tissues were triploids. Triploid P. edulis had more drought resistance than diploid plants. Our study provided a method for breeding of passion fruit by means of a stable and reproducible regeneration system from endosperm culture, leading to the generation of triploid plants.


Asunto(s)
Passiflora , Triploidía , Brotes de la Planta , Endospermo , Fitomejoramiento , Regeneración/genética
15.
Plant Dis ; 108(7): 2006-2016, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38243182

RESUMEN

Black sigatoka disease (BSD) is the most important foliar threat in banana production, and breeding efforts against it should take advantage of genomic selection (GS), which has become one of the most explored tools to increase genetic gain, save time, and reduce selection costs. To evaluate the potential of GS in banana for BSD, 210 triploid accessions were obtained from the African Banana and Plantain Research Center to constitute a training population. The variability in the population was assessed at the phenotypic level using BSD- and agronomic-related traits and at the molecular level using single-nucleotide polymorphisms (SNPs). The analysis of variance showed a significant difference between accessions for almost all traits measured, although at the genomic group level, there was no significant difference for BSD-related traits. The index of non-spotted leaves among accessions ranged from 0.11 to 0.8. The accessions screening in controlled conditions confirmed the susceptibility of all genomic groups to BSD. The principal components analysis with phenotypic data revealed no clear diversity partition of the population. However, the structure analysis and the hierarchical clustering analysis with SNPs grouped the population into four clusters and two subpopulations, respectively. The field and laboratory screening of the banana GS training population confirmed that all genomic groups are susceptible to BSD but did not reveal any genetic structure, whereas SNP markers exhibited clear genetic structure and provided useful information in the perspective of applying GS.


Asunto(s)
Musa , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Selección Genética , Triploidía , Musa/genética , Polimorfismo de Nucleótido Simple/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Genoma de Planta/genética , Fenotipo , Hojas de la Planta/genética , Fitomejoramiento
16.
J Fish Biol ; 104(6): 1960-1971, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38553987

RESUMEN

The study investigated if gonad maturation in triploid brown trout, Salmo trutta, was entirely suppressed or only delayed, and if triploids could interbreed with diploid counterparts. Ten percent of the total number of 3-year-old triploid S. trutta, 15% of 4-year-old fish, and 17% of 5-year-old fish produced semen. Three and 4 years old triploid fish did not produce eggs, but 15% of the 5-year-old fish did so. The quantity and sperm motility of triploid semen did not differ from diploids, but the sperm concentration was significantly lower. When diploid eggs were fertilized with triploid semen (3n × 2n crosses), the percentage of eyed stage embryos, of hatched larvae, and of normal-shaped larvae did not differ from the diploid controls. Circa 90% of 3n × 2n crosses had a ploidy level of 2.4n. In the remaining percentage of 3n × 2n crosses, the ploidy level was ≥2n and <2.4n. In sperm competition experiments where diploid eggs were fertilized with a mixture of diploid and triploid semen, 52% of the originating larvae had a ploidy level of 2n, 43% of 2.4n, and 5% of the fish were not exactly classified. From the start of feeding to an age of 248 days, the mortality rate of 3n × 2n interploid crosses and of 2n × 2n controls was similar. The growth of interploid crosses was significantly higher than that of controls. In triploid mature females, the egg mass per kilogram of body weight was significantly lower than in diploids. The mass of the non-hardened eggs and the percentile weight increase during hardening did not differ from diploid eggs. When triploid eggs were fertilized with diploid semen (2n × 3n crosses), the development rate to normal hatched larvae was less than 10%. All originating larvae had a ploidy level of 3n. From the start of feeding to an age of 248 days, 2n × 3n crosses had a higher mortality rate (15%) than diploid controls (<5%). Growth of this type of interploid crosses was reduced in comparison to controls. Therefore, triploids introduced into natural waters for recreational fisheries or escaping from farms may interbreed with diploid counterparts. This not only alters the genotypes of local populations but also changes the ploidy levels.


Asunto(s)
Diploidia , Triploidía , Trucha , Animales , Trucha/genética , Trucha/crecimiento & desarrollo , Trucha/fisiología , Masculino , Femenino , Gónadas/crecimiento & desarrollo , Motilidad Espermática , Espermatozoides/fisiología
17.
Molecules ; 29(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38893545

RESUMEN

Tetraploid oysters are artificially produced oysters that do not exist in nature. The successful breeding of 100% triploid oysters resolved the difficulties of traditional drug-induced triploids, such as the presence of drug residues and a low triploid induction rate. However, little is known concerning the biochemical composition and nutrient contents of such tetraploids. Therefore, we investigated compositional differences among diploid, triploid, and tetraploid Crassostrea gigas as well as between males and females of diploids and tetraploids. The findings indicated that glycogen, EPA, ∑PUFA, and omega-3 contents were significantly higher in triploid oysters than in diploids or tetraploids; tetraploid oysters had a significantly higher protein content, C14:0, essential amino acid, and flavor-presenting amino acid contents than diploids or triploids. For both diploid and tetraploids, females had significantly higher levels of glutamate, methionine, and phenylalanine than males but lower levels of glycine and alanine. In addition, female oysters had significantly more EPA, DHA, omega-3, and total fatty acids, a result that may be due to the fact that gonadal development in male oysters requires more energy to sustain growth, consumes greater amounts of nutrients, and accumulates more proteins. With these results, important information is provided on the production of C. gigas, as well as on the basis and backing for the genetic breeding of oysters.


Asunto(s)
Aminoácidos , Crassostrea , Diploidia , Ácidos Grasos , Tetraploidía , Triploidía , Animales , Crassostrea/genética , Crassostrea/metabolismo , Aminoácidos/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/análisis , Femenino , Masculino
18.
BMC Genomics ; 24(1): 56, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721120

RESUMEN

BACKGROUND: Toxicodendron vernicifluum, belonging to the family Anacardiaceae, is an important commercial arbor species, which can provide us with the raw lacquer, an excellent adhesive and painting material used to make lacquer ware. Compared with diploid, triploid lacquer tree has a higher yield of raw lacquer and stronger resistance to stress. Triploid T. vernicifluum was a newly discovered natural triploid lacquer tree. However, the taxonomy of triploid T. vernicifluum has remained uncertain. Here, we sequenced and analyzed the complete chloroplast (cp) genome of triploid T. vernicifluum and compared it with related species of Toxicodendron genus based on chloroplast genome and SSR markers. RESULTS: The plastome of triploid T. vernicifluum is 158,221 bp in length, including a pair of inverted repeats (IRs) of 26,462 bp, separated by a large single-copy region of 86,951 bp and a small single-copy region of 18,346 bp. In total, 132 genes including 87 protein-coding genes, 37 tRNA genes and 8 rRNA genes were identified in the triploid T. vernicifluum. Among these, 16 genes were duplicated in the IR regions, 14 genes contain one intron, while three genes contain two introns. After nucleotide substitutions, seven small inversions were analyzed in the chloroplast genomes, eight hotspot regions were found, which could be useful molecular genetic markers for future population genetics. Phylogenetic analyses showed that triploid T. vernicifluum was a sister to T. vernicifluum cv. Dahongpao and T. vernicifluum cv. Hongpigaobachi. Moreover, phylogenetic clustering based on the SSR markers showed that all the samples of triploid T. vernicifluum, T. vernicifluum cv. Dahongpao and T. vernicifluum cv. Hongpigaobachi in one group, while the samples of T. vernicifluum and T. succedaneum in another group, which is consistent with the cp genome and morphological analysis. CONCLUSIONS: The current genomic datasets provide pivotal genetic resources to determine the phylogenetic relationships, variety identification, breeding and resource exploitation, and future genetic diversity-related studies of T. vernicifluum.


Asunto(s)
Genoma del Cloroplasto , Toxicodendron , Triploidía , Laca , Filogenia , Fitomejoramiento
19.
Emerg Infect Dis ; 29(5): 1076-1078, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081624

RESUMEN

We discovered a hybrid Leishmania parasite in Costa Rica that is genetically similar to hybrids from Panama. Genome analyses demonstrated the hybrid is triploid and identified L. braziliensis and L. guyanensis-related strains as parents. Our findings highlight the existence of poorly sampled Leishmania (Viannia) variants infectious to humans.


Asunto(s)
Leishmania , Leishmaniasis Cutánea , Triploidía , Animales , Humanos , Leishmania/genética , Leishmaniasis Cutánea/parasitología , Parásitos , Genómica
20.
Mol Biol Evol ; 39(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36205042

RESUMEN

The appearance of genomic variations such as loss of heterozygosity (LOH) has a significant impact on phenotypic diversity observed in a population. Recent large-scale yeast population genomic surveys have shown a high frequency of these events in natural isolates and more particularly in polyploids. However, the frequency, extent, and spectrum of LOH in polyploid organisms have never been explored and are poorly characterized to date. Here, we accumulated 5,163 LOH events over 1,875 generations in 76 mutation accumulation (MA) lines comprising nine natural heterozygous diploid, triploid, and tetraploid natural S. cerevisiae isolates from different ecological and geographical origins. We found that the rate and spectrum of LOH are variable across ploidy levels. Of the total accumulated LOH events, 8.5%, 21%, and 70.5% of them were found in diploid, triploid, and tetraploid MA lines, respectively. Our results clearly show that the frequency of generated LOH events increases with ploidy level. In fact, the cumulative LOH rates were estimated to be 9.3 × 10-3, 2.2 × 10-2, and 8.4 × 10-2 events per division for diploids, triploids, and tetraploids, respectively. In addition, a clear bias toward the accumulation of interstitial and short LOH tracts is observed in triploids and tetraploids compared with diploids. The variation of the frequency and spectrum of LOH events across ploidy level could be related to the genomic instability, characterizing higher ploidy isolates.


Asunto(s)
Saccharomyces cerevisiae , Tetraploidía , Saccharomyces cerevisiae/genética , Triploidía , Ploidias , Pérdida de Heterocigocidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda