Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
FASEB J ; 38(11): e23648, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38822661

RESUMEN

Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.


Asunto(s)
Conducta Animal , Vida Libre de Gérmenes , Serotonina , Animales , Serotonina/metabolismo , Ratones , Masculino , Microbioma Gastrointestinal/fisiología , Encéfalo/metabolismo , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Ansiedad/metabolismo , Ansiedad/microbiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Ratones Endogámicos C57BL , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT1A/genética , Colon/metabolismo , Colon/microbiología
2.
Epilepsia ; 65(7): e125-e130, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38738911

RESUMEN

Because of its involvement in breathing control and neuronal excitability, dysregulation of the serotonin (5-HT) 2C receptor (5-HT2C) might play a key role in sudden unexpected death in epilepsy. Seizure-induced respiratory arrest is thus prevented by a 5-HT2B/C agonist in different seizure model. However, the specific contribution of 5-HT2C in chronic epilepsy-related respiratory dysfunction remains unknown. In a rat model of temporal lobe epilepsy (EPI rats), in which we previously reported interictal respiratory dysfunctions and a reduction of brainstem 5-HT tone, quantitative reverse transcriptase polymerase chain reaction showed overexpression of TPH2 (5-HT synthesis enzyme), SERT (5-HT reuptake transporter), and 5-HT2C transcript levels in the brainstem of EPI rats, and of RNA-specific adenosine deaminase (ADAR1, ADAR2) involved in the production of 5-HT2C isoforms. Interictal ventilation was assessed with whole-body plethysmography before and 2 h after administration of SB242084 (2 mg/kg), a specific antagonist of 5-HT2C. As expected, SB242084 administration induced a progressive decrease in ventilatory parameters and an alteration of breathing stability in both control and EPI rats. However, the size of the SB242084 effect was lower in EPI rats than in controls. Increased 5-HT2C gene expression in the brainstem of EPI rats could be part of a compensatory mechanism against epilepsy-related low 5-HT tone and expression of 5-HT2C isoforms for which 5-HT affinity might be lower.


Asunto(s)
Tronco Encefálico , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal , Receptor de Serotonina 5-HT2C , Animales , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo , Ratas , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/metabolismo , Tronco Encefálico/metabolismo , Tronco Encefálico/efectos de los fármacos , Masculino , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Indoles/farmacología , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Ratas Sprague-Dawley , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Aminopiridinas , Tiofenos
3.
Acta Pharmacol Sin ; 45(7): 1393-1405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38528118

RESUMEN

Anxiety disorders are the most common psychiatric condition, but the etiology of anxiety disorders remains largely unclear. Our previous studies have shown that neuroplastin 65 deficiency (NP65-/-) mice exhibit abnormal social and mental behaviors and decreased expression of tryptophan hydroxylase 2 (TPH2) protein. However, whether a causal relationship between TPH2 reduction and anxiety disorders exists needs to be determined. In present study, we found that replenishment of TPH2 in dorsal raphe nucleus (DRN) enhanced 5-HT level in the hippocampus and alleviated anxiety-like behaviors. In addition, injection of AAV-NP65 in DRN significantly increased TPH2 expression in DRN and hippocampus, and reduced anxiety-like behaviors. Acute administration of exogenous 5-HT or HTR3 agonist SR57227A in hippocampus mitigated anxiety-like behaviors in NP65-/- mice. Moreover, replenishment of TPH2 in DRN partly repaired the impairment of long-term potentiation (LTP) maintenance in hippocampus of NP65-/- mice. Finally, we found that loss of NP65 lowered transcription factors Lmx1b expression in postnatal stage and replenishment of NP65 in DRN reversed the decrease in Lmx1b expression of NP65-/- mice. Together, our findings reveal that NP65 deficiency induces anxiety phenotype by downregulating DRN-hippocampus serotonergic-HTR3 transmission. These studies provide a novel and insightful view about NP65 function, suggesting an attractive potential target for treatment of anxiety disorders.


Asunto(s)
Ansiedad , Núcleo Dorsal del Rafe , Hipocampo , Ratones Noqueados , Receptores de Serotonina 5-HT3 , Serotonina , Triptófano Hidroxilasa , Animales , Núcleo Dorsal del Rafe/metabolismo , Hipocampo/metabolismo , Ansiedad/metabolismo , Serotonina/metabolismo , Ratones , Masculino , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/deficiencia , Receptores de Serotonina 5-HT3/metabolismo , Receptores de Serotonina 5-HT3/genética , Ratones Endogámicos C57BL , Fenotipo , Potenciación a Largo Plazo
4.
Phytopathology ; 114(6): 1401-1410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38148161

RESUMEN

Serotonin (5-hydroxytryptamine) is an essential neurotransmitter involved in regulating various behaviors in plant-parasitic nematodes, including locomotion, egg laying, feeding, and mating. However, the functional role of serotonin in root-knot nematode invasion of host plants and the molecular mechanisms underlying feeding behavior remain poorly understood. In this study, we tested the effects of exogenous serotonin and the pharmacological compounds fluoxetine and methiothepin on the feeding behaviors of Meloidogyne graminicola. Our results suggested that M. graminicola possesses an endogenous serotonin signaling pathway and that serotonin plays a crucial role in modulating feeding behaviors in M. graminicola second-stage juveniles. We also identified and cloned the serotonin synthesis enzyme tryptophan hydroxylase (Mg-tph-1) in M. graminicola and investigated the role of endogenous serotonin by generating RNA interference nematodes in Mg-tph-1. Silencing Mg-tph-1 substantially reduced nematode invasion, development, and reproduction. According to the immunostaining results, we speculated that these serotonin immunoreactive cells near the nerve ring in M. graminicola are likely homologous to Caenorhabditis elegans ADFs, NSMs, and RIH serotonergic neurons. Furthermore, we investigated the impact of phytoserotonin on nematode invasion and development in rice by overexpressing OsTDC-3 or supplementing rice plants with tryptamine and found that an increase in phytoserotonin increases nematode pathogenicity. Overall, our study provides insights into the essential role of serotonin in M. graminicola host plant parasitism and proposes that the serotonergic signaling pathway could be a potential target for controlling plant-parasitic nematodes.


Asunto(s)
Oryza , Enfermedades de las Plantas , Interferencia de ARN , Serotonina , Tylenchoidea , Animales , Tylenchoidea/fisiología , Serotonina/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Oryza/parasitología , Oryza/genética , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Interacciones Huésped-Parásitos , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Raíces de Plantas/parasitología , Fluoxetina/farmacología , Transducción de Señal , Conducta Alimentaria/efectos de los fármacos
5.
Biochemistry (Mosc) ; 89(6): 1109-1121, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38981704

RESUMEN

At the Institute of Cytology and Genetics (Novosibirsk, Russia) for over 85 generations, gray rats have been selected for high aggression toward humans (aggressive rats) or its complete absence (tame rats). Aggressive rats are an interesting model for studying fear-induced aggression. Benzopentathiepin TC-2153 exerts an antiaggressive effect on aggressive rats and affects the serotonergic system: an important regulator of aggression. The aim of this study was to investigate effects of TC-2153 on key serotonergic-system enzymes - tryptophan hydroxylase 2 (TPH2) and monoamine oxidase A (MAOA) - in the brain of aggressive and tame rats. Either TC-2153 (10 or 20 mg/kg) or vehicle was administered once intraperitoneally to aggressive and tame male rats. TPH2 and MAOA enzymatic activities and mRNA and protein levels were assessed. The selection for high aggression resulted in upregulation of Tph2 mRNA in the midbrain, of the TPH2 protein in the hippocampus, and of proteins TPH2 and MAOA in the hypothalamus, as compared to tame rats. MAO enzymatic activity was higher in the midbrain and hippocampus of aggressive rats while TPH2 activity did not differ between the strains. The single TC-2153 administration decreased TPH2 and MAO activity in the hypothalamus and midbrain, respectively. The drug affected MAOA protein levels in the hypothalamus: upregulated them in aggressive rats and downregulated them in tame ones. Thus, this study shows profound differences in the expression and activity of key serotonergic system enzymes in the brain of rats selectively bred for either highly aggressive behavior toward humans or its absence, and the effects of benzopentathiepin TC-2153 on these enzymes may point to mechanisms of its antiaggressive action.


Asunto(s)
Agresión , Encéfalo , Monoaminooxidasa , Triptófano Hidroxilasa , Animales , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Monoaminooxidasa/metabolismo , Monoaminooxidasa/genética , Ratas , Masculino , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Agresión/efectos de los fármacos , Humanos , Serotonina/metabolismo
6.
Ecotoxicol Environ Saf ; 280: 116521, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850708

RESUMEN

The aim of this study is to investigate the role of estrogen receptor ß (ERß) in nonylphenol (NP) - induced depression - like behavior in rats and its impact on the regulation of the TPH2/5-HT pathway. In the in vitro experiment, rat basophilic leukaemia cells (RBL-2H3) cells were divided into the four groups: blank group, NP group (20 µM), ERß agonist group (0.01 µM), and NP+ERß agonist group (20 µM+0.01 µM). For the in vivo experiment, 72 adult male Sprague-Dawley rats were randomly divided into following six groups: the Control, NP (40 mg/kg) group, ERß agonist (2 mg/kg, Diarylpropionitrile (DPN)) group, ERß inhibitor (0.1 mg/kg, 4-(2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl) phenol (PHTPP)) group, NP+ERß agonist (40 mg/kg NP + 2 mg/kg DPN) group, and NP+ERß inhibitor (40 mg/kg NP + 0.1 mg/kg PHTPP) group, with 12 rats in each group. Each rat in drug group were given NP by gavage and/or received a single intraperitoneal injection of DPN 2 mg/kg or PHTPP 0.1 mg/kg. Both in vivo and in vitro, NP group showed a decrease in the expression levels of ERß, tryptophan hydroxylase (TPH1), and tryptophan hydroxylase-2 (TPH2) genes and proteins, and reduced levels of DA, NE, and 5-hydroxytryptophan (5-HT) neurotransmitters. RBL-2H3 cells showed signs of cell shrinkage, with rounded cells, increased suspension and more loosely arranged cells. The effectiveness of the ERß agonist stimulation exhibited an increase exceeding 60% in RBL-2H3 cells. The application of ERß agonist resulted in an alleviation the aforementioned alterations. ERß agonist activated the TPH2/5-HT signaling pathways. Compared to the control group, the NP content in the brain tissue of the NP group was significantly increased. The latency to eat for the rats was longer and the amount of food consumed was lower, and the rats had prolonged immobility time in the behavioral experiment of rats. The expression levels of ERß, TPH1, TPH2, 5-HT and 5-HITT proteins were decreased in the NP group, suggesting NP-induced depression-like behaviours as well as disturbances in the secretion of serum hormones and monoamine neurotransmitters. In the NP group, the midline raphe nucleus showed an elongated nucleus with a dark purplish-blue colour, nuclear atrophy, displacement and pale cytoplasm. ERß might ameliorate NP-induced depression-like behaviors, and secretion disorders of serum hormones and monoamine neurotransmitters via activating TPH2/5-HT signaling pathways.


Asunto(s)
Depresión , Receptor beta de Estrógeno , Fenoles , Ratas Sprague-Dawley , Serotonina , Triptófano Hidroxilasa , Animales , Triptófano Hidroxilasa/metabolismo , Receptor beta de Estrógeno/metabolismo , Fenoles/toxicidad , Masculino , Ratas , Serotonina/metabolismo , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Depresión/metabolismo , Neurotransmisores/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Nitrilos/toxicidad , Nitrilos/farmacología , Propionatos/toxicidad , Propionatos/farmacología , Pirazoles , Pirimidinas
7.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732220

RESUMEN

Serotonin is an essential neuromodulator for mental health and animals' socio-cognitive abilities. However, we previously found that a constitutive depletion of central serotonin did not impair rat cognitive abilities in stand-alone tests. Here, we investigated how a mild and acute decrease in brain serotonin would affect rats' cognitive abilities. Using a novel rat model of inducible serotonin depletion via the genetic knockdown of tryptophan hydroxylase 2 (TPH2), we achieved a 20% decrease in serotonin levels in the hypothalamus after three weeks of non-invasive oral doxycycline administration. Decision making, cognitive flexibility, and social recognition memory were tested in low-serotonin (Tph2-kd) and control rats. Our results showed that the Tph2-kd rats were more prone to choose disadvantageously in the long term (poor decision making) in the Rat Gambling Task and that only the low-serotonin poor decision makers were more sensitive to probabilistic discounting and had poorer social recognition memory than other low-serotonin and control individuals. Flexibility was unaffected by the acute brain serotonin reduction. Poor social recognition memory was the most central characteristic of the behavioral network of low-serotonin poor decision makers, suggesting a key role of social recognition in the expression of their profile. The acute decrease in brain serotonin appeared to specifically amplify the cognitive impairments of the subgroup of individuals also identified as poor decision makers in the population. This study highlights the great opportunity the Tph2-kd rat model offers to study inter-individual susceptibilities to develop cognitive impairment following mild variations of brain serotonin in otherwise healthy individuals. These transgenic and differential approaches together could be critical for the identification of translational markers and vulnerabilities in the development of mental disorders.


Asunto(s)
Toma de Decisiones , Serotonina , Triptófano Hidroxilasa , Animales , Ratas , Conducta Animal , Cognición , Técnicas de Silenciamiento del Gen , Hipotálamo/metabolismo , Serotonina/metabolismo , Conducta Social , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética
8.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928178

RESUMEN

Physiology and behavior are structured temporally to anticipate daily cycles of light and dark, ensuring fitness and survival. Neuromodulatory systems in the brain-including those involving serotonin and dopamine-exhibit daily oscillations in neural activity and help shape circadian rhythms. Disrupted neuromodulation can cause circadian abnormalities that are thought to underlie several neuropsychiatric disorders, including bipolar mania and schizophrenia, for which a mechanistic understanding is still lacking. Here, we show that genetically depleting serotonin in Tph2 knockout mice promotes manic-like behaviors and disrupts daily oscillations of the dopamine biosynthetic enzyme tyrosine hydroxylase (TH) in midbrain dopaminergic nuclei. Specifically, while TH mRNA and protein levels in the Substantia Nigra (SN) and Ventral Tegmental Area (VTA) of wild-type mice doubled between the light and dark phase, TH levels were high throughout the day in Tph2 knockout mice, suggesting a hyperdopaminergic state. Analysis of TH expression in striatal terminal fields also showed blunted rhythms. Additionally, we found low abundance and blunted rhythmicity of the neuropeptide cholecystokinin (Cck) in the VTA of knockout mice, a neuropeptide whose downregulation has been implicated in manic-like states in both rodents and humans. Altogether, our results point to a previously unappreciated serotonergic control of circadian dopamine signaling and propose serotonergic dysfunction as an upstream mechanism underlying dopaminergic deregulation and ultimately maladaptive behaviors.


Asunto(s)
Ritmo Circadiano , Dopamina , Ratones Noqueados , Serotonina , Triptófano Hidroxilasa , Tirosina 3-Monooxigenasa , Área Tegmental Ventral , Animales , Serotonina/metabolismo , Ratones , Ritmo Circadiano/fisiología , Dopamina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/deficiencia , Área Tegmental Ventral/metabolismo , Colecistoquinina/metabolismo , Colecistoquinina/genética , Neuronas Dopaminérgicas/metabolismo , Masculino , Sustancia Negra/metabolismo , Ratones Endogámicos C57BL , Trastorno Bipolar/metabolismo , Trastorno Bipolar/genética
9.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928404

RESUMEN

Phytochemicals and tryptophan (Trp) metabolites have been found to modulate gut function and health. However, whether these metabolites modulate gut ion transport and serotonin (5-HT) metabolism and signaling requires further investigation. The aim of this study was to investigate the effects of selected phytochemicals and Trp metabolites on the ion transport and 5-HT metabolism and signaling in the ileum of mice in vitro using the Ussing chamber technique. During the in vitro incubation, vanillylmandelic acid (VMA) reduced (p < 0.05) the short-circuit current, and 100 µM chlorogenic acid (CGA) (p = 0.12) and perillic acid (PA) (p = 0.14) had a tendency to reduce the short-circuit current of the ileum. Compared with the control, PA and N-acetylserotonin treatment upregulated the expression of tryptophan hydroxylase 1 (Tph1), while 100 µM cinnamic acid, indolelactic acid (ILA), and 10 µM CGA or indoleacetaldehyde (IAld) treatments downregulated (p < 0.05) the mRNA levels of Tph1. In addition, 10 µM IAld or 100 µM ILA upregulated (p < 0.05) the expression of monoamine oxidase A (Maoa). However, 10 µM CGA or 100 µM PA downregulated (p < 0.05) Maoa expression. All selected phytochemicals and Trp metabolites upregulated (p < 0.05) the expression of Htr4 and Htr7 compared to that of the control group. VMA and CGA reduced (p < 0.05) the ratios of Htr1a/Htr7 and Htr4/Htr7. These findings may help to elucidate the effects of phytochemicals and Trp metabolites on the regulation of gut ion transport and 5-HT signaling-related gut homeostasis in health and disease.


Asunto(s)
Cinamatos , Íleon , Serotonina , Transducción de Señal , Triptófano , Animales , Serotonina/metabolismo , Ratones , Íleon/metabolismo , Íleon/efectos de los fármacos , Triptófano/metabolismo , Transducción de Señal/efectos de los fármacos , Cinamatos/farmacología , Cinamatos/metabolismo , Transporte Iónico/efectos de los fármacos , Masculino , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Ácido Clorogénico/farmacología , Ácido Clorogénico/metabolismo
10.
Bull Exp Biol Med ; 176(6): 756-760, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38922549

RESUMEN

The enzyme tryptophan hydroxylase 2 (TPH2) catalyzes the hydroxylation of L-tryptophan to L-5-hydroxytryptophan (5-HTP), the first and the key step in 5-HT synthesis in the mammalian brain. Mutations in the human Tph2 gene reducing enzyme activity increase the risk of psychopathology. Pharmacological chaperones are small molecules that can specifically bind to mutant protein molecules, restore their disturbed 3D structure to the native state, and increase their stability and functional activity. The chaperone activity of (R)-2-amino-6-(1R,2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one (BH4) is expressed by increasing the in vitro thermal stability of mutant tyrosine hydroxylase and phenylalanine hydroxylase molecules which are similar to TPH2 in their structure and characteristics. The P447R substitution in the mouse TPH2 molecule results in a 2-fold decrease in enzyme activity in their brains. We studied the effect of this mutation on the TPH2 thermal stability, as well as on the ability of BH4 and its 8 structural analogues to increase the thermal stability of the mutant TPH2 from midbrain extracts of BALB/C mice. Temperature stability was studied by the decrease in enzyme activity during its heating for 2 min at increasing temperatures and was evaluated by the T50 value that is the temperature at which the enzyme activity decreased by half. For the mutant TPH2, the T50 value was decreased compared to the wild type enzyme. BH4 and its closest structural analogue, 6-methyl-5,6,7,8-tetrahydropterin, increased the T50 value, i.e., exhibited chaperone activity. Other close BH4 analogs, 6,7-dimethyl-5,6,7,8-tetrahydropterin and folic acid, were not effective. It can be assumed that BH4 can be effective in the treatment of mental disorders caused by mutations in the Tph2 gene.


Asunto(s)
Estabilidad de Enzimas , Triptófano Hidroxilasa , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/química , Animales , Ratones , Humanos , Mutación , Temperatura , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Pterinas/química , Pterinas/metabolismo , Pterinas/farmacología
11.
Gac Med Mex ; 159(5): 380-386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38096842

RESUMEN

BACKGROUND: Early appearance of serotonin in the fetal brain and its effects on brain morphogenesis support its neurotrophic role. OBJECTIVE: To determine the presence of serotonergic cells and the expression of tryptophan-5-hydroxylase (TPH), 5-hydroxytryptamine (5-HT), serotonin transporter (SERT), 5-HT1A receptor and Pet-1 during the development of the cerebral cortex, both in situ and in tissue cultures. MATERIAL AND METHODS: A descriptive, observational study was carried out in pregnant Wistar rats. The presence of the plug was regarded as the beginning of gestation. On days 13, 16 and 17, cesarean sections were performed to obtain the fetuses, and the brains were then immediately dissected to identify the presence of serotonergic cells, TPH, 5-HT, SERT, 5-HT1A and Pet-1 in tissue cultures and in situ by immunostaining detected on a confocal microscope. RESULTS: Serotonergic cells and terminals were observed in the midbrain on day 17 of gestation, and in neopallium cocultures on days 13 and 16. TPH, 5-HT, SERT and Pet-1 immunopositive cells were also observed in the neopallium on day 12 of culture. CONCLUSIONS: The presence of serotonergic cells and other elements of the serotonergic system in the early cerebral cortex was confirmed, which may be transient and participate in cortical maturation processes during brain development.


ANTECEDENTES: La aparición temprana de serotonina en el cerebro fetal y sus efectos en la morfogénesis cerebral apoyan su papel neurotrófico. OBJETIVO: Determinar la presencia de células serotoninérgicas y la expresión de triptófano-5-hidroxilasa (TPH), 5-hidroxitriptamina (5-HT), transportador de serotonina (SERT), receptor 5-HT1A y Pet-1 durante el desarrollo de la corteza cerebral, tanto in situ como en cultivo de tejidos. MATERIAL Y MÉTODOS: Se realizó estudio observacional descriptivo en ratas Wistar preñadas. La presencia del tapón se consideró el inicio de la gestación; en los días 13, 16 y 17 se practicaron cesáreas para obtener los fetos e inmediatamente se disecaron los cerebros para identificar células serotoninérgicas, TPH, 5-HT, SERT, 5-HT1A y Pet-1 en cultivo de tejido e in situ mediante inmunomarcaje detectado en un microscopio confocal. RESULTADOS: Células y terminales serotoninérgicas fueron observadas en el mesencéfalo el día 17 de gestación y en cocultivos de neopalio los días 13 y 16. También se observaron células inmunopositivas a TPH, 5-HT, SERT y Pet-1 en el neopalio en el día 12 del cultivo. CONCLUSIONES: Se confirmó la presencia de células serotoninérgicas y otros elementos del sistema serotoninérgico en la corteza cerebral temprana, la cual puede ser transitoria y participar en los procesos de maduración cortical durante el desarrollo cerebral.


Asunto(s)
Neuronas , Serotonina , Animales , Femenino , Embarazo , Ratas , Corteza Cerebral/metabolismo , Feto/metabolismo , Neuronas/metabolismo , Ratas Wistar , Serotonina/metabolismo , Serotonina/farmacología , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/farmacología , Modelos Animales
12.
Sci Rep ; 14(1): 6651, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509264

RESUMEN

Multiple sclerosis is a debilitating autoimmune disease, characterized by chronic inflammation of the central nervous system. While the significance of the gut microbiome on multiple sclerosis pathogenesis is established, the underlining mechanisms are unknown. We found that serum levels of the microbial postbiotic tryptophan metabolite indole-3-carboxaldehyde (3-IAld) inversely correlated with disease duration in multiple sclerosis patients. Much like the host-derived tryptophan derivative L-Kynurenine, 3-IAld would bind and activate the Aryl hydrocarbon Receptor (AhR), which, in turn, controls endogenous tryptophan catabolic pathways. As a result, in peripheral lymph nodes, microbial 3-IAld, affected mast-cell tryptophan metabolism, forcing mast cells to produce serotonin via Tph1. We thus propose a protective role for AhR-mast-cell activation driven by the microbiome, whereby natural metabolites or postbiotics will have a physiological role in immune homeostasis and may act as therapeutic targets in autoimmune diseases.


Asunto(s)
Esclerosis Múltiple , Triptófano , Humanos , Quinurenina/metabolismo , Ligandos , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Triptófano Hidroxilasa/metabolismo
13.
Int J Biol Macromol ; 264(Pt 1): 130609, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437933

RESUMEN

5-Hydroxytryptophan (5-HTP), as the precursor of serotonin and melatonin in animals, can regulate mood, sleep, and behavior, which is widely used in pharmaceutical and health products industry. The enzymatic production of 5-hydroxytryptophan (5-HTP) from L-tryptophan (L-Trp) using tryptophan hydroxylase (TPH) show huge potential in application due to its advantages, such as mild reaction conditions, avoidance of protection/deprotection processes, excellent regioselectivity and considerable catalytic efficiency, compared with chemical synthesis and natural extraction. However, the low thermostability of TPH restricted its hydroxylation efficiency toward L-Trp. In this study, we aimed to improve the thermostability of TPH via semi-rational design guided by (folding free energy) ΔΔG fold calculation. After two rounds of evolution, two beneficial mutants M1 (S422V) and M30 (V275L/I412K) were obtained. Thermostability evaluation showed that M1 and M30 possessed 5.66-fold and 6.32-fold half-lives (t1/2) at 37 °C, and 4.2 °C and 6.0 °C higher melting temperature (Tm) than the WT, respectively. The mechanism behind thermostability improvement was elucidated with molecular dynamics simulation. Furthermore, biotransformation of 5-HTP from L-Trp was performed, M1 and M30 displayed 1.80-fold and 2.30-fold than that of WT, respectively. This work provides important insights into the thermostability enhancement of TPH and generate key mutants that could be robust candidates for practical production of 5-HTP.


Asunto(s)
5-Hidroxitriptófano , Triptófano Hidroxilasa , Animales , 5-Hidroxitriptófano/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano/metabolismo , Serotonina/metabolismo , Ingeniería de Proteínas
14.
Int J Biol Macromol ; 260(Pt 1): 129484, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242416

RESUMEN

L-Tryptophan hydroxylation catalyzed by tryptophan hydroxylase (TPH) presents a promising method for synthesizing 5-hydroxytryptophan (5-HTP), yet the limited activity of wild-type human TPH2 restricts its application. A high-activity mutant, MT10 (H318E/H323E), was developed through semi-rational active site saturation testing (CAST) of wild-type TPH2, exhibiting a 2.85-fold increase in kcat/Km over the wild type, thus enhancing catalytic efficiency. Two biotransformation systems were developed, including an in vitro one-pot system and a Whole-Cell Catalysis System (WCCS). In the WCCS, MT10 achieved a conversion rate of only 31.5 % within 32 h. In the one-pot reaction, MT10 converted 50 mM L-tryptophan to 44.5 mM 5-HTP within 8 h, achieving an 89 % conversion rate, outperforming the M1 (NΔ143/CΔ26) variant. Molecular dynamics simulations indicated enhanced interactions of MT10 with the substrate, suggesting improved binding affinity and system stability. This study offers an effective approach for the efficient production of 5-HTP.


Asunto(s)
5-Hidroxitriptófano , Triptófano Hidroxilasa , Humanos , 5-Hidroxitriptófano/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/química , Triptófano Hidroxilasa/metabolismo , Triptófano/química , Dominio Catalítico , Hidroxilación
15.
Behav Brain Res ; 462: 114867, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38246394

RESUMEN

Disruption of the brain serotoninergic (5-HT) system during development induces long-lasting changes in molecular profile, cytoarchitecture, and function of neurons, impacting behavioral regulation throughout life. In male and female rats, we investigate the effect of neonatal tryptophan hydroxylase (TPH) inhibition by using para-chlorophenylalanine (pCPA) on the expression of 5-HTergic system components and neuropeptides related to adolescent social play behavior regulation. We observed sex-dependent 5-HT levels decrease after pCPA-treatment in the dorsal raphe nucleus (DRN) at 17 and 35 days. Neonatal pCPA-treatment increased playing, social and locomotory behaviors assessed in adolescent rats of both sexes. The pCPA-treated rats demonstrated decreased Crh (17 days) and increased Trh (35 days) expression in the hypothalamic paraventricular nucleus (PVN). There was sex dimorphism in Htr2c (17 days) and VGF (35 days) in the prefrontal cortex, with the females expressing higher levels of it than males. Our results indicate that neonatal pCPA-treatment results in a long-lasting and sex-dependent DRN 5-HT synthesis changes, decreased Crh, and increased Trh expression in the PVN, resulting in a hyperactivity-like phenotype during adolescence. The present work demonstrates that the impairment of TPH function leads to neurobehavioral disorders related to hyperactivity and impulsivity, such as attention deficit hyperactivity disorder (ADHD).


Asunto(s)
Núcleo Hipotalámico Paraventricular , Serotonina , Ratas , Femenino , Masculino , Animales , Fenclonina/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Serotonina/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Triptófano Hidroxilasa/metabolismo
16.
J Morphol ; 285(8): e21756, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39086183

RESUMEN

Using immunocytochemistry, serotonergic nerve elements were documented in the nervous system of the planarian Girardia tigrina. Serotonin-immunopositive components were observed in the brain, ventral, dorsal and longitudinal nerve cords, transverse nerve commissures connecting the nerve cords, and in the nerve plexus. Whole-mount preparations of G. tigrina were analyzed by fluorescent and confocal laser scanning microscopy. An essential quantitative morphometric measurement of serotonin-immunopositive structures was conducted in three body regions (anterior, middle, and posterior) of the planarian. The number of serotonin neurons was maximal in the head region. The ventral nerve cords gradually decreased in thickness from anterior to posterior body ends. Physiological action of exogenously applied serotonin was studied in G. tigrina for the first time. It was found that serotonin (0.1 and 1 µmol L-1) accelerated eye regeneration. The transcriptome sequencing performed for the first time for the planarian G. tigrina revealed the transcripts of the tryptophan hydroxylase (trph), amino acid decarboxylase (aadc) and serotonin transporter (sert) genes. The data obtained indicate the presence of the components of serotonin pathway in G. tigrina. The identified transcripts can take part in serotonin turnover and participate in the realization of biological effects of serotonin in planarians, associated with eyes regeneration and differentiation.


Asunto(s)
Planarias , Serotonina , Animales , Serotonina/metabolismo , Planarias/anatomía & histología , Planarias/fisiología , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Platelmintos , Neuronas Serotoninérgicas/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
17.
PLoS One ; 19(6): e0304910, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837989

RESUMEN

During lactation, the murine mammary gland is responsible for a significant increase in circulating serotonin. However, the role of mammary-derived serotonin in energy homeostasis during lactation is unclear. To investigate this, we utilized C57/BL6J mice with a lactation and mammary-specific deletion of the gene coding for the rate-limiting enzyme in serotonin synthesis (TPH1, Wap-Cre x TPH1FL/FL) to understand the metabolic contributions of mammary-derived serotonin during lactation. Circulating serotonin was reduced by approximately 50% throughout lactation in Wap-Cre x TPH1FL/FL mice compared to wild-type mice (TPH1FL/FL), with mammary gland and liver serotonin content reduced on L21. The Wap-Cre x TPH1FL/FL mice had less serotonin and insulin immunostaining in the pancreatic islets on L21, resulting in reduced circulating insulin but no changes in glucose. The mammary glands of Wap-Cre x TPH1FL/FL mice had larger mammary alveolar areas, with fewer and smaller intra-lobular adipocytes, and increased expression of milk protein genes (e.g., WAP, CSN2, LALBA) compared to TPH1FL/FL mice. No changes in feed intake, body composition, or estimated milk yield were observed between groups. Taken together, mammary-derived serotonin appears to contribute to the pancreas-mammary cross-talk during lactation with potential implications in the regulation of insulin homeostasis.


Asunto(s)
Lactancia , Hígado , Glándulas Mamarias Animales , Ratones Endogámicos C57BL , Serotonina , Triptófano Hidroxilasa , Animales , Lactancia/metabolismo , Serotonina/metabolismo , Femenino , Glándulas Mamarias Animales/metabolismo , Ratones , Hígado/metabolismo , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Páncreas/metabolismo , Insulina/metabolismo , Insulina/sangre
18.
Environ Sci Pollut Res Int ; 31(36): 49200-49213, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048857

RESUMEN

Environmental contamination by pharmaceuticals from industrial waste and anthropogenic activities poses adverse health effects on non-target organisms. We evaluated the neurobehavioral and biochemical responses accompanying exposure to ecological relevant concentrations of atenolol (0, 0.1, 1.0, and 10 µg/L) for seven uninterrupted days in adult zebrafish (Danio rerio). Atenolol-exposed fish exhibited anxiety-like behavior, characterized by significant bottom-dwelling with marked reduction in vertical exploration. Atenolol-exposed fish exhibited marked increase in the duration and frequency of aggressive events without altering their preference for conspecifics. Biochemical data using brain samples indicated that atenolol disrupted antioxidant enzyme activities and induced oxidative stress. Exposure to atenolol markedly decreased ATP and AMP hydrolysis without affecting ADP hydrolysis and acetylcholinesterase (AChE) activity. Atenolol significantly upregulated tryptophan hydroxylase 1 (tph1) mRNA expression but downregulated brain-derived neurotrophic factor (bdnf) mRNA. Collectively, waterborne atenolol elicits aggressive and anxiety-like responses in adult zebrafish, accompanied by oxidative stress, reduced nucleotide hydrolysis, altered tph1 and bdnf mRNA expression, which may impact the survival and health of fish in aquatic environment.


Asunto(s)
Atenolol , Conducta Animal , Estrés Oxidativo , Contaminantes Químicos del Agua , Pez Cebra , Animales , Atenolol/farmacología , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo
19.
Commun Biol ; 7(1): 998, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147805

RESUMEN

Affective disorders are frequently associated with disrupted circadian rhythms. The existence of rhythmic secretion of central serotonin (5-hydroxytryptamine, 5-HT) pattern has been reported; however, the functional mechanism underlying the circadian control of 5-HTergic mood regulation remains largely unknown. Here, we investigate the role of the circadian nuclear receptor REV-ERBα in regulating tryptophan hydroxylase 2 (Tph2), the rate-limiting enzyme of 5-HT synthesis. We demonstrate that the REV-ERBα expressed in dorsal raphe (DR) 5-HTergic neurons functionally competes with PET-1-a nuclear activator crucial for 5-HTergic neuron development. In mice, genetic ablation of DR 5-HTergic REV-ERBα increases Tph2 expression, leading to elevated DR 5-HT levels and reduced depression-like behaviors at dusk. Further, pharmacological manipulation of the mice DR REV-ERBα activity increases DR 5-HT levels and affects despair-related behaviors. Our findings provide valuable insights into the molecular and cellular link between the circadian rhythm and the mood-controlling DR 5-HTergic systems.


Asunto(s)
Ritmo Circadiano , Núcleo Dorsal del Rafe , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Serotonina , Triptófano Hidroxilasa , Animales , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Núcleo Dorsal del Rafe/metabolismo , Serotonina/metabolismo , Serotonina/biosíntesis , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Ratones , Masculino , Afecto/fisiología , Ratones Noqueados , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Depresión/metabolismo
20.
Behav Brain Res ; 466: 115000, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38631659

RESUMEN

The brain serotonin (5-HT) system performs a neurotrophic function and supports the plasticity of the nervous system, while its age-related changes can increase the risk of senile neurodegeneration. Zebrafish brain is highly resistant to damage and neurodegeneration due to its high regeneration potential and it is a promising model object in searching for molecular factors preventing age-related neurodegeneration. In the present study alterations in 5-HT-related behavior in the home tank and the novel tank diving test, as well as 5-HT, 5-HIAA levels, tryptophan hydroxylase (TPH), monoamine oxidase (MAO) activity and the expression of genes encoding TPH, MAO, 5-HT transporter and 5-HT receptors in the brain of 6, 12, 24 and 36 month old zebrafish males and females are investigated. Marked sexual dimorphism in the locomotor activity in the novel tank test is revealed: females of all ages move slower than males. No sexual dimorphism in 5-HT-related traits is observed. No changes in 5-HT and 5-HIAA levels in zebrafish brain during aging is observed. At the same time, the aging is accompanied by a decrease in the locomotor activity, TPH activity, tph2 and htr1aa genes expression as well as an increase in the MAO activity and slc6a4a gene expression in their brain. These results indicate that the brain 5-HT system in zebrafish is resistant to age-related alterations.


Asunto(s)
Envejecimiento , Encéfalo , Ácido Hidroxiindolacético , Monoaminooxidasa , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Serotonina , Caracteres Sexuales , Triptófano Hidroxilasa , Pez Cebra , Animales , Serotonina/metabolismo , Masculino , Femenino , Envejecimiento/metabolismo , Envejecimiento/fisiología , Encéfalo/metabolismo , Monoaminooxidasa/metabolismo , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Ácido Hidroxiindolacético/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Actividad Motora/fisiología , Conducta Animal/fisiología , Receptores de Serotonina/metabolismo , Receptores de Serotonina/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda