Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Dev Biol ; 477: 155-163, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34058190

RESUMEN

Matrix metalloproteinase-2 (a.k.a. Gelatinase A, or Mmp2 in zebrafish) is known to have roles in pathologies such as arthritis, in which its function is protective, as well as in cancer metastasis, in which it is activated as part of the migration and invasion of metastatic cells. It is also required during development and the regeneration of tissue architecture after wound healing, but its roles in tissue remodelling are not well understood. Gelatinase A is activated post-translationally by proteolytic cleavage, making information about its transcription and even patterns of protein accumulation difficult to relate to biologically relevant activity. Using a transgenic reporter of endogenous Mmp2 activation in zebrafish, we describe its accumulation and post-translational proteolytic activation during the embryonic development of the tail. Though Mmp2 is expressed relatively ubiquitously, it seems to be active only at specific locations and times. Mmp2 is activated robustly in the neural tube and in maturing myotome boundaries. It is also activated in the notochord during body axis straightening, in patches scattered throughout the epidermal epithelium, in the gut, and on cellular protrusions extending from mesenchymal cells in the fin folds. The activation of Mmp2 in the notochord, somite boundaries and fin folds associates with collagen remodelling in the notochord sheath, myotome boundary ECM and actinotrichia respectively. Mmp2 is likely an important effector of ECM remodelling during the morphogenesis of the notochord, a driving structure in vertebrate development. It also appears to function in remodelling the ECM associated with growing epithelia and the maturation of actinotrichia in the fin folds, mediated by mesenchymal cell podosomes.


Asunto(s)
Colágeno/metabolismo , Pez Cebra/embriología , Animales , Activación Enzimática , Metaloproteinasa 2 de la Matriz , Morfogénesis , Tubo Neural/embriología , Tubo Neural/enzimología , Procesamiento Proteico-Postraduccional , Cola (estructura animal)/embriología , Cola (estructura animal)/enzimología
2.
Development ; 145(19)2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30228103

RESUMEN

Neural tube closure relies on the apical constriction of neuroepithelial cells. Research in frog and fly embryos has found links between the levels of intracellular calcium, actomyosin dynamics and apical constriction. However, genetic evidence for a role of calcium in apical constriction during mammalian neurulation is still lacking. Secretory pathway calcium ATPase (SPCA1) regulates calcium homeostasis by pumping cytosolic calcium into the Golgi apparatus. Loss of function in Spca1 causes cranial exencephaly and spinal cord defects in mice, phenotypes previously ascribed to apoptosis. However, our characterization of a novel allele of Spca1 revealed that neurulation defects in Spca1 mutants are not due to cell death, but rather to a failure of neuroepithelial cells to apically constrict. We show that SPCA1 influences cell contractility by regulating myosin II localization. Furthermore, we found that loss of Spca1 disrupts actin dynamics and the localization of the actin remodeling protein cofilin 1. Taken together, our results provide evidence that SPCA1 promotes neurulation by regulating the cytoskeletal dynamics that promote apical constriction and identify cofilin 1 as a downstream effector of SPCA1 function.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Citoesqueleto/metabolismo , Tubo Neural/embriología , Tubo Neural/enzimología , Vías Secretoras , Citoesqueleto de Actina/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Apoptosis , Secuencia de Bases , Calcio/metabolismo , ATPasas Transportadoras de Calcio/genética , Cofilina 1/metabolismo , Femenino , Pruebas Genéticas , Homeostasis , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Miosina Tipo II/metabolismo , Células Neuroepiteliales/metabolismo , Fosforilación , Médula Espinal/embriología , Médula Espinal/patología
3.
Genes Dev ; 26(21): 2380-5, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23124063

RESUMEN

Here, we explore whether silencing via promoter DNA methylation plays a role in neural versus neural crest cell lineage decisions. We show that DNA methyltransferase3A (DNMT3A) promotes neural crest specification by directly mediating repression of neural genes like Sox2 and Sox3. DNMT3A is expressed in the neural plate border, and its knockdown causes ectopic Sox2 and Sox3 expression at the expense of neural crest markers. In vivo chromatin immunoprecipitation of neural folds demonstrates that DNMT3A specifically associates with CpG islands in the Sox2 and Sox3 promoter regions, resulting in their repression by methylation. Thus, DNMT3A functions as a molecular switch, repressing neural to favor neural crest cell fate.


Asunto(s)
Diferenciación Celular , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/citología , Tubo Neural/citología , Animales , Linaje de la Célula , Embrión de Pollo , Islas de CpG/genética , Metilación de ADN , ADN Metiltransferasa 3A , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Cresta Neural/enzimología , Tubo Neural/enzimología
4.
Biochim Biophys Acta ; 1863(7 Pt A): 1490-8, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27039038

RESUMEN

Covalent attachment of the Small ubiquitin-like modifier (Sumo) polypeptide to proteins regulates many processes in the eukaryotic cell. In the nervous system, Sumo has been associated with the synapsis and with neurodegenerative diseases. However, its involvement in regulating neuronal differentiation remains largely unknown. Here we show that net Sumo deconjugation is observed during neurogenesis and that Sumo overexpression impairs this process. In an attempt to shed light on the underlying mechanisms, we have analyzed the expression profile of genes coding for components of the sumoylation pathway following induction of neuronal differentiation. Interestingly, we observed strong upregulation of the Senp7 protease at both mRNA and protein levels under differentiation conditions. Sumo proteases, by removing Sumo from targets, are key regulators of sumoylation. Strikingly, loss-of-function analysis demonstrated that Senp7 is required for neuronal differentiation not only in a model cell line, but also in the developing neural tube. Finally, reporter-based analysis of the Senp7 promoter indicated that Senp7 was transiently activated at early stages of neuronal differentiation. Thus, the Sumo protease Senp7 adds to the list of factors involved in vertebrate neurogenesis.


Asunto(s)
Endopeptidasas/metabolismo , Células-Madre Neurales/enzimología , Tubo Neural/enzimología , Neurogénesis , Animales , Línea Celular Tumoral , Embrión de Pollo , Endopeptidasas/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Ratones , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Mensajero/metabolismo , Transducción de Señal , Sumoilación , Factores de Tiempo , Activación Transcripcional , Transfección , Tretinoina/farmacología
5.
J Biol Chem ; 289(22): 15507-17, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24733394

RESUMEN

Mammalian mitochondria are able to produce formate from one-carbon donors such as serine, glycine, and sarcosine. This pathway relies on the mitochondrial pool of tetrahydrofolate (THF) and several folate-interconverting enzymes in the mitochondrial matrix. We recently identified MTHFD2L as the enzyme that catalyzes the oxidation of 5,10-methylenetetrahydrofolate (CH2-THF) in adult mammalian mitochondria. We show here that the MTHFD2L enzyme is bifunctional, possessing both CH2-THF dehydrogenase and 5,10-methenyl-THF cyclohydrolase activities. The dehydrogenase activity can use either NAD(+) or NADP(+) but requires both phosphate and Mg(2+) when using NAD(+). The NADP(+)-dependent dehydrogenase activity is inhibited by inorganic phosphate. MTHFD2L uses the mono- and polyglutamylated forms of CH2-THF with similar catalytic efficiencies. Expression of the MTHFD2L transcript is low in early mouse embryos but begins to increase at embryonic day 10.5 and remains elevated through birth. In adults, MTHFD2L is expressed in all tissues examined, with the highest levels observed in brain and lung.


Asunto(s)
Aminohidrolasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Mitocondrias/enzimología , Complejos Multienzimáticos/metabolismo , Tubo Neural/enzimología , Factores de Edad , Empalme Alternativo/fisiología , Aminohidrolasas/genética , Animales , Femenino , Ácido Fólico/metabolismo , Formiato-Tetrahidrofolato Ligasa/genética , Formiato-Tetrahidrofolato Ligasa/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Ratones , Ratones Endogámicos C57BL , Complejos Multienzimáticos/genética , NAD/metabolismo , NADP/metabolismo , Tubo Neural/embriología , Oxidación-Reducción , Embarazo , Ratas , Especificidad por Sustrato
6.
Birth Defects Res A Clin Mol Teratol ; 100(8): 576-83, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24985542

RESUMEN

BACKGROUND: Neural tube defects (NTDs) are one of the most common birth defects in humans. Maternal intake of folic acid was linked to prevention of NTDs in the 1970s. This realization led to the establishment of mandatory and/or voluntary food folic acid fortification programs in many countries that have reduced the incidence of NTDs by up to 70% in humans. Despite 40 years of intensive research, the biochemical mechanisms underlying the protective effects of folic acid remain unknown. RESULTS: Recent research reveals a role for mitochondrial folate-dependent one-carbon metabolism in neural tube closure. CONCLUSION: In this article, we review the evidence linking NTDs to aberrant mitochondrial one-carbon metabolism in humans and mouse models. The potential of formate, a product of mitochondrial one-carbon metabolism, to prevent NTDs is also discussed.


Asunto(s)
Ácido Fólico/uso terapéutico , Mitocondrias/enzimología , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/prevención & control , Tubo Neural/embriología , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Animales , Suplementos Dietéticos , Ácido Fólico/sangre , Ácido Fólico/metabolismo , Formiato-Tetrahidrofolato Ligasa/genética , Formiato-Tetrahidrofolato Ligasa/metabolismo , Formiatos/farmacología , Humanos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ratones , Antígenos de Histocompatibilidad Menor , Mitocondrias/metabolismo , Modelos Animales , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Tubo Neural/enzimología
7.
Dev Dyn ; 242(9): 1101-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23723158

RESUMEN

BACKGROUND: PPM1G is a nuclear localized serine/threonine phosphatase implicated to be a regulator of chromatin remodeling, mRNA splicing, and DNA damage. However, its in vivo function is unknown. RESULTS: Here we show that ppm1g expression is highly enriched in the central nervous system during mouse and zebrafish development. ppm1g(-/-) mice were embryonic lethal with incomplete penetrance after E12.5. Rostral defects, including neural tube and craniofacial defects were observed in ppm1g(-/-) embryos associated with increased cell death in the neural epithelium. In zebrafish, loss of ppm1g also led to neural defects with aberrant neural marker gene expression. Primary fibroblasts from ppm1g(-/-) embryos failed to grow without immortalization while immortalized ppm1g(-/-) fibroblasts had increased cell death upon oxidative and genotoxic stress when compared to wild type fibroblasts. CONCLUSIONS: Our in vivo and in vitro studies revealed a critical role for PPM1G in normal development and cell survival.


Asunto(s)
Proteínas del Tejido Nervioso/biosíntesis , Tubo Neural/embriología , Neurogénesis/fisiología , Fosfoproteínas Fosfatasas/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Línea Celular Transformada , Supervivencia Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Tubo Neural/citología , Tubo Neural/enzimología , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 2C , Pez Cebra/genética , Proteínas de Pez Cebra/genética
8.
Dev Dyn ; 241(3): 574-82, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22275110

RESUMEN

BACKGROUND: Astacin-like metallo-proteases are zinc endopeptidases conserved among vertebrates and invertebrates. First described as hatching gland enzymes, many members of the family possess other functions during embryonic development. In the chick, however, functions of Astacin-like proteins remain elusive. RESULTS: We report here that Astacin-like (ASTL) is strongly expressed in mouse and chicken embryonic stem (ES) cells and exhibits a very dynamic expression pattern during embryogenesis and organogenesis, mostly in remodeled epithelia. Consistent with its expression in ES cells, chick ASTL is detected in vivo in the pluripotent cells of the epiblast and then disappears from the newly induced neural plate. ASTL expression remains at the junction of non-neural and neural ectoderm, just before neural tube closure. At later stages, chick ASTL is detected in the ventral epidermis before ventral closure, in the intermediate mesoderm, in the gonads and in the forming nephric duct and tubules of the mesonephros and metanephros. CONCLUSIONS: ASTL is dynamically expressed in the embryonic epithelium and in embryonic stem cells, suggesting an important function for the control of epithelial cell behavior during early development.


Asunto(s)
Células Madre Embrionarias/enzimología , Epitelio/embriología , Epitelio/enzimología , Metaloproteasas/biosíntesis , Morfogénesis , Neurogénesis , Animales , Biomarcadores , Embrión de Pollo , Ectodermo/enzimología , Ectodermo/crecimiento & desarrollo , Epitelio/inervación , Ratones , Tubo Neural/enzimología , Tubo Neural/crecimiento & desarrollo , Células Madre Pluripotentes/enzimología , Células Madre Pluripotentes/fisiología
9.
Gene Expr Patterns ; 9(3): 166-72, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19059363

RESUMEN

Heparan sulfate proteoglycans (HSPGs) are abundant cell surface molecules, consisting of glycosaminoglycan (GAG) chains bound to a protein core. There is high diversity in the sulfation pattern within each GAG chain, creating specific binding sites for many proteins including cell signalling factors, whose activities and distribution are modified by their association with HSPGs (Danesin et al., 2006; Freeman et al., 2008). Here, we describe the distinct expression of three enzymes which modify the 6-O-sulfation state of HSPGs: two 6-O-endosulfatases (Sulf1 and Sulf2), and a 6-O-sulfotransferase (6OST-1). We use in situ hybridisation to determine the spatial distribution of transcripts during tailbud stages of Xenopus laevis development, with a particular focus on neural regions where the 6-O-sulfatases are expressed ventrally and the 6-O-sulfotransferase is restricted dorsally. The complementary expression of these enzymes in the hindbrain and neural tube suggest a role for specific HSPG structure in dorsoventral patterning, possibly through modifying the activity or distribution of signalling molecules such as BMP, Sonic hedgehog, Wnt and/or FGF.


Asunto(s)
Rombencéfalo , Sulfotransferasas/biosíntesis , Sulfotransferasas/genética , Proteínas de Xenopus/biosíntesis , Proteínas de Xenopus/genética , Animales , ADN Complementario , Gástrula/enzimología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteoglicanos de Heparán Sulfato/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Tubo Neural/enzimología , Rombencéfalo/embriología , Rombencéfalo/enzimología , Homología de Secuencia de Ácido Nucleico , Médula Espinal/embriología , Médula Espinal/enzimología , Xenopus laevis , Cigoto/enzimología
10.
Artículo en Inglés | MEDLINE | ID: mdl-19194987

RESUMEN

Maternal diabetes causes neural tube defects in embryos, which are associated with increased apoptosis in the neuroepithelium. Many factors, including effector caspases, have been shown to be involved in the events. However, the key regulators have not been identified and the underlying mechanisms remain to be addressed. Caspase-8, an initiator caspase, has been shown to be altered in diabetic embryopathy, suggesting a role as an upstream apoptotic regulator. Using mouse embryos as a model system, this study demonstrates that caspase-8 is required for the production of hyperglycemia-associated embryonic malformations. Caspase-8 was shown to be expressed in the developing neural tube. Its activity, as evidenced by enhanced cleavage, was increased by hyperglycemia. These changes were associated with increased formation of the active cleavage of Bid. Inhibition of caspase-8 activity in high glucose-challenged embryos reduced the rate of embryonic malformation and this was associated with decreased apoptosis in the neuroepithelium of the neural tube. Inhibition of caspase-8 activity also reduced hyperglycemia-induced Bid activation and caspase-9 cleavage. These data suggest that caspase-8 may control diabetic embryopathy-associated apoptosis via regulation of the Bid-stimulated mitochondrion/caspase-9 pathway.


Asunto(s)
Anomalías Inducidas por Medicamentos/enzimología , Caspasa 8/metabolismo , Diabetes Mellitus Experimental/enzimología , Defectos del Tubo Neural/enzimología , Tubo Neural/enzimología , Embarazo en Diabéticas/enzimología , Anomalías Inducidas por Medicamentos/etiología , Animales , Apoptosis/efectos de los fármacos , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Glucosa/farmacología , Procesamiento de Imagen Asistido por Computador , Ratones , Tubo Neural/anomalías , Defectos del Tubo Neural/etiología , Embarazo , Embarazo en Diabéticas/etiología
11.
Small GTPases ; 9(4): 283-289, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27768516

RESUMEN

Neural tube closure is an important morphogenetic event that involves dramatic reshaping of both neural and non-neural tissues. Rho GTPases are key cytoskeletal regulators involved in cell motility and in several developmental processes, and are thus expected to play pivotal roles in neurulation. Here, we discuss 2 recent studies that shed light on the roles of distinct Rho GTPases in different tissues during neurulation. RhoA plays an essential role in regulating actomyosin dynamics in the neural epithelium of the elevating neural folds, while Rac1 is required for the formation of cell protrusions in the non-neural surface ectoderm during neural fold fusion.


Asunto(s)
Tubo Neural/metabolismo , Médula Espinal/embriología , Proteínas de Unión al GTP rho/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Tubo Neural/citología , Tubo Neural/enzimología
12.
Elife ; 72018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29969095

RESUMEN

A fundamental issue in developmental biology and in organ homeostasis is understanding the molecular mechanisms governing the balance between stem cell maintenance and differentiation into a specific lineage. Accumulating data suggest that cell cycle dynamics play a major role in the regulation of this balance. Here we show that the G2/M cell cycle regulator CDC25B phosphatase is required in mammals to finely tune neuronal production in the neural tube. We show that in chick neural progenitors, CDC25B activity favors fast nuclei departure from the apical surface in early G1, stimulates neurogenic divisions and promotes neuronal differentiation. We design a mathematical model showing that within a limited period of time, cell cycle length modifications cannot account for changes in the ratio of the mode of division. Using a CDC25B point mutation that cannot interact with CDK, we show that part of CDC25B activity is independent of its action on the cell cycle.


Asunto(s)
Ciclo Celular/genética , Modelos Estadísticos , Células-Madre Neurales/enzimología , Tubo Neural/enzimología , Neurogénesis/genética , Fosfatasas cdc25/genética , Animales , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Diferenciación Celular , Embrión de Pollo , Pollos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , Tubo Neural/citología , Tubo Neural/crecimiento & desarrollo , Neuronas/citología , Neuronas/enzimología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Mutación Puntual , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/citología , Médula Espinal/enzimología , Médula Espinal/crecimiento & desarrollo , Imagen de Lapso de Tiempo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Fosfatasas cdc25/metabolismo
13.
BMB Rep ; 49(8): 443-8, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27345715

RESUMEN

The arginylation branch of the N-end rule pathway is a ubiquitin-mediated proteolytic system in which post-translational conjugation of Arg by ATE1-encoded Arg-tRNA-protein transferase to N-terminal Asp, Glu, or oxidized Cys residues generates essential degradation signals. Here, we characterized the ATE1-/- mice and identified the essential role of N-terminal arginylation in neural tube development. ATE1-null mice showed severe intracerebral hemorrhages and cystic space near the neural tubes. Expression of ATE1 was prominent in the developing brain and spinal cord, and this pattern overlapped with the migration path of neural stem cells. The ATE1-/- brain showed defective G-protein signaling. Finally, we observed reduced mitosis in ATE1-/- neuroepithelium and a significantly higher nitric oxide concentration in the ATE1-/- brain. Our results strongly suggest that the crucial role of ATE1 in neural tube development is directly related to proper turn-over of the RGS4 protein, which participate in the oxygen-sensing mechanism in the cells. [BMB Reports 2016; 49(8): 443-448].


Asunto(s)
Aminoaciltransferasas/metabolismo , Eliminación de Gen , Tubo Neural/anomalías , Tubo Neural/embriología , Alelos , Aminoaciltransferasas/deficiencia , Animales , Proliferación Celular , Sistema Nervioso Central/patología , Pérdida del Embrión/enzimología , Pérdida del Embrión/patología , Embrión de Mamíferos/patología , Femenino , Ratones Endogámicos C57BL , Tubo Neural/enzimología , Tubo Neural/patología , Células Neuroepiteliales/metabolismo , Células Neuroepiteliales/patología , Neuronas/patología , Embarazo , Proteolisis , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , beta-Galactosidasa/metabolismo
14.
Toxicology ; 328: 142-51, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25527867

RESUMEN

Exposure to environmental toxic chemicals in utero during the neural tube development period can cause developmental disorders. To evaluate the disruption of neural tube development programming, the murine neural tube defects (NTDs) model was induced by interrupting folate metabolism using methotrexate in our previous study. The present study aimed to examine the effects of dNTP deficiency induced by hydroxyurea (HU), a specific ribonucleotide reductase (RNR) inhibitor, during murine neural tube development. Pregnant C57BL/6J mice were intraperitoneally injected with various doses of HU on gestation day (GD) 7.5, and the embryos were checked on GD 11.5. RNR activity and deoxynucleoside triphosphate (dNTP) levels were measured in the optimal dose. Additionally, DNA damage was examined by comet analysis and terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL) assay. Cellular behaviors in NTDs embryos were evaluated with phosphorylation of histone H3 (PH-3) and caspase-3 using immunohistochemistry and western blot analysis. The results showed that NTDs were observed mostly with HU treatment at an optimal dose of 225 mg/kg b/w. RNR activity was inhibited and dNTP levels were decreased in HU-treated embryos with NTDs. Additionally, increased DNA damage, decreased proliferation, and increased caspase-3 were significant in NTDs embryos compared to the controls. Results indicated that HU induced murine NTDs model by disturbing dNTP metabolism and further led to the abnormal cell balance between proliferation and apoptosis.


Asunto(s)
Anomalías Inducidas por Medicamentos/etiología , Desoxirribonucleótidos/metabolismo , Inhibidores Enzimáticos/toxicidad , Hidroxiurea/toxicidad , Exposición Materna/efectos adversos , Defectos del Tubo Neural/inducido químicamente , Tubo Neural/efectos de los fármacos , Ribonucleótido Reductasas/antagonistas & inhibidores , Anomalías Inducidas por Medicamentos/embriología , Anomalías Inducidas por Medicamentos/enzimología , Animales , Apoptosis/efectos de los fármacos , Encéfalo/anomalías , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Daño del ADN , Regulación hacia Abajo , Femenino , Edad Gestacional , Histonas/metabolismo , Ratones Endogámicos C57BL , Tubo Neural/anomalías , Tubo Neural/enzimología , Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/enzimología , Fosforilación , Embarazo , Ribonucleótido Reductasas/metabolismo , Factores de Tiempo
15.
Reprod Sci ; 19(8): 823-31, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22534324

RESUMEN

Maternal diabetes-induced neural tube defects (NTDs) are associated with increased programmed cell death (apoptosis) in the neuroepithelium, which is related to intracellular nitrosative stress. To alleviate nitrosative stress, diabetic pregnant mice were fed via gavage an inhibitor of nitric oxide (NO) synthase (NOS) 2, L-N6-(1-iminoethyl)-lysine (L-NIL; 80 mg/kg), once a day from embryonic (E) day 7.5 to 9.5 during early stages of neurulation. The treatment significantly reduced NTD rate in the embryos, compared with that in vehicle (normal saline)-treated diabetic group. In addition to alleviation of nitrosative stress, endoplasmic reticulum (ER) stress was also ameliorated, assessed by quantification of associated factors. Apoptosis was reduced, indicated by caspase 8 activation. These results show that nitrosative stress is important in diabetes-induced NTDs via exacerbating ER stress, leading to increased apoptosis. Oral treatment with NOS-2 inhibitor alleviates nitrosative and ER stress, decreases apoptosis, and reduces NTDs in the embryos, providing information for further interventional studies to reduce diabetes-associated birth defects.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Estrés del Retículo Endoplásmico/efectos de los fármacos , Defectos del Tubo Neural/prevención & control , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Embarazo en Diabéticas/enzimología , Animales , Apoptosis/efectos de los fármacos , Caspasa 8/análisis , Diabetes Mellitus Experimental/enzimología , Estrés del Retículo Endoplásmico/fisiología , Femenino , Lisina/administración & dosificación , Lisina/análogos & derivados , Ratones , Ratones Endogámicos C57BL , Tubo Neural/enzimología , Tubo Neural/patología , Defectos del Tubo Neural/etiología , Defectos del Tubo Neural/patología , Embarazo
16.
PLoS One ; 7(9): e43330, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984420

RESUMEN

Wnt signalling is a key regulatory factor in animal development and homeostasis and plays an important role in the establishment and progression of cancer. Wnt signals are predominantly transduced via the Frizzled family of serpentine receptors to two distinct pathways, the canonical ß-catenin pathway and a non-canonical pathway controlling planar cell polarity and convergent extension. Interference between these pathways is an important determinant of cellular and phenotypic responses, but is poorly understood. Here we show that TNIK (Traf2 and Nck-interacting kinase) and MINK (Misshapen/NIKs-related kinase) MAP4K signalling kinases are integral components of both canonical and non-canonical pathways in Xenopus. xTNIK and xMINK interact and are proteolytically cleaved in vivo to generate Kinase domain fragments that are active in signal transduction, and Citron-NIK-Homology (CNH) Domain fragments that are suppressive. The catalytic activity of the Kinase domain fragments of both xTNIK and xMINK mediate non-canonical signalling. However, while the Kinase domain fragments of xTNIK also mediate canonical signalling, the analogous fragments derived from xMINK strongly antagonize this signalling. Our data suggest that the proteolytic cleavage of xTNIK and xMINK determines their respective activities and is an important factor in controlling the balance between canonical and non-canonical Wnt signalling in vivo.


Asunto(s)
Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Vía de Señalización Wnt , Proteínas de Xenopus/antagonistas & inhibidores , Xenopus/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biocatálisis , Tipificación del Cuerpo , Polaridad Celular , Proteínas Dishevelled , Embrión no Mamífero/citología , Embrión no Mamífero/enzimología , Gastrulación , Técnicas de Silenciamiento del Gen , Quinasas del Centro Germinal , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Tubo Neural/citología , Tubo Neural/embriología , Tubo Neural/enzimología , Notocorda/citología , Notocorda/embriología , Péptidos/metabolismo , Fenotipo , Fosfoproteínas/metabolismo , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Transporte de Proteínas , Eliminación de Secuencia , Fracciones Subcelulares/enzimología , Proteínas de Dominio T Box/metabolismo , Xenopus/embriología , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo
17.
Int J Dev Biol ; 54(10): 1503-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21302259

RESUMEN

The iodotyrosine dehalogenase1 (DEHAL1) enzyme is a transmembrane protein that belongs to the nitroreductase family and shows a highly conserved N-terminal domain. DEHAL1 is present in the liver, kidney and thyroid of mammals. DEHAL1 is known to act on diiodotyrosine (DIT) and monoiodotyrosine (MIT), and is involved in iodine recycling in relation to thyroglobulin. Here, we show the distribution of DEHAL1 during gastrulation to neurulation in developing chick. Immunocytochemistry using an anti-serum directed against the N-terminal domain (met(27)-trp(180) fragment) of human DEHAL1 revealed labelled cells in the embryonic ectoderm, embryonic endoderm, neural plate and in the yolk platelets of the chick embryo at gastrulation stage. Distinct DEHAL1 positive cells were located in the presumptive head ectoderm, presumptive neural crest, head mesenchymal cells and in the dorsal, lateral and ventral parts of neural tube during neurulation. Some cells located at the margin of the developing notochord and somites were also DEHAL1-positive. While the functional significance of this observation is not known, it is likely that DEHAL1 might serve as an agent that regulates cell specific deiodination of MIT and DIT before the onset of thyroidal secretion. The presence of DEHAL1 in different components of the chick embryo suggests its involvement in iodine turnover prior to the formation of functional thyroid.


Asunto(s)
Embrión de Pollo/enzimología , Diyodotirosina/metabolismo , Hidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Monoyodotirosina/metabolismo , Glándula Tiroides/embriología , Animales , Tipificación del Cuerpo , Ectodermo/enzimología , Endodermo/enzimología , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Hidrolasas/genética , Immunoblotting , Yodo/metabolismo , Mesodermo/enzimología , Cresta Neural/enzimología , Placa Neural/enzimología , Tubo Neural/enzimología , Neurulación , Glándula Tiroides/enzimología , Saco Vitelino/enzimología
18.
Development ; 136(15): 2653-63, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19592578

RESUMEN

Hypomorphic mutations in the human SPINT2 gene cause a broad spectrum of abnormalities in organogenesis, including organ and digit duplications, atresia, fistulas, hypertelorism, cleft palate and hamartoma. SPINT2 encodes the transmembrane serine protease inhibitor HAI2 (placental bikunin), and the severe developmental effects of decreased HAI2 activity can be hypothesized to be a consequence of excess pericellular proteolytic activity. Indeed, we show here that HAI2 is a potent regulator of protease-guided cellular responses, including motogenic activity and transepithelial resistance of epithelial monolayers. Furthermore, we show that inhibition of the transmembrane serine protease matriptase (encoded by St14) is an essential function of HAI2 during tissue morphogenesis. Genetic inactivation of the mouse Spint2 gene led to defects in neural tube closure, abnormal placental labyrinth development associated with loss of epithelial cell polarity, and embryonic demise. Developmental defects observed in HAI2-deficient mice were caused by unregulated matriptase activity, as both placental development and embryonic survival in HAI2-deficient embryos were completely restored by the simultaneous genetic inactivation of matriptase. However, neural tube defects were detected in HAI2-deficient mice even in the absence of matriptase, although at lower frequency, indicating that the inhibition of additional serine protease(s) by HAI2 is required to complete neural development. Finally, by genetic complementation analysis, we uncovered a unique and complex functional interaction between HAI2 and the related HAI1 in the regulation of matriptase activity during development. This study indicates that unregulated matriptase-dependent cell surface proteolysis can cause a diverse array of abnormalities in mammalian development.


Asunto(s)
Membrana Celular/enzimología , Embrión de Mamíferos/enzimología , Proteínas de la Membrana/metabolismo , Tubo Neural/embriología , Tubo Neural/enzimología , Placentación , Serina Endopeptidasas/metabolismo , Animales , Embrión de Mamíferos/citología , Epistasis Genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Glicoproteínas de Membrana/metabolismo , Ratones , Morfogénesis , Tubo Neural/citología , Placenta/citología , Placenta/embriología , Placenta/enzimología , Embarazo , Proteínas Inhibidoras de Proteinasas Secretoras , Supresión Genética , Análisis de Supervivencia
19.
Mech Dev ; 126(3-4): 240-55, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19027850

RESUMEN

ADAM19 is a member of the meltrin subfamily of ADAM metalloproteases. In Xenopus, ADAM19 is present as a maternal transcript. Zygotic expression starts during gastrulation and is apparent in the dorsal blastopore lip. ADAM19 expression through neurulation and tailbud formation becomes enriched in dorsal structures such as the neural tube, the notochord and the somites. Using morpholino knock-down, we show that a reduction of ADAM19 protein in gastrula stage embryos results in a decrease of Brachyury expression in the notochord concomitant with an increase in the dorsal markers, Goosecoid and Chordin. These changes in gene expression are accompanied by a decrease in phosphorylated AKT, a downstream target of the EGF signaling pathway, and occur while the blastopore closes at the same rate as the control embryos. During neurulation and tailbud formation, ADAM19 knock-down induces a reduction of the neural markers N-tubulin and NRP1 but not Sox2. In the somitic mesoderm, the expression of MLC is also decreased while MyoD is not. ADAM19 knockdown also reduces neural crest markers prior to cell migration. Neural crest induction is also decreased in embryos treated with an EGF receptor inhibitor suggesting that this pathway is necessary for neural crest cell induction. Using targeted knock-down of ADAM19 we show that the reduction of neural and neural crest markers is cell autonomous and that the migration if the cranial neural crest is perturbed. We further show that ADAM19 protein reduction affects somite organization, reduces 12-101 expression and perturbs fibronectin localization at the intersomitic boundary.


Asunto(s)
Desarrollo de Músculos , Sistema Nervioso/embriología , Sistema Nervioso/enzimología , Cresta Neural/embriología , Cresta Neural/enzimología , Xenopus laevis/embriología , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Animales , Biomarcadores/metabolismo , Tipificación del Cuerpo/efectos de los fármacos , Factor de Crecimiento Epidérmico/metabolismo , Proteínas Fetales/metabolismo , Gástrula/efectos de los fármacos , Gástrula/embriología , Gástrula/enzimología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Mesodermo/efectos de los fármacos , Mesodermo/embriología , Desarrollo de Músculos/efectos de los fármacos , Sistema Nervioso/efectos de los fármacos , Cresta Neural/citología , Cresta Neural/efectos de los fármacos , Tubo Neural/efectos de los fármacos , Tubo Neural/embriología , Tubo Neural/enzimología , Notocorda/efectos de los fármacos , Notocorda/metabolismo , Oligonucleótidos Antisentido/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Somitos/efectos de los fármacos , Somitos/embriología , Somitos/enzimología , Proteínas de Dominio T Box/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Cigoto/efectos de los fármacos , Cigoto/enzimología
20.
Mol Biol Cell ; 19(5): 2289-99, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18337466

RESUMEN

Although Rho-GTPases are well-known regulators of cytoskeletal reorganization, their in vivo distribution and physiological functions have remained elusive. In this study, we found marked apical accumulation of Rho in developing chick embryos undergoing folding of the neural plate during neural tube formation, with similar accumulation of activated myosin II. The timing of accumulation and biochemical activation of both Rho and myosin II was coincident with the dynamics of neural tube formation. Inhibition of Rho disrupted its apical accumulation and led to defects in neural tube formation, with abnormal morphology of the neural plate. Continuous activation of Rho also altered neural tube formation. These results indicate that correct spatiotemporal regulation of Rho is essential for neural tube morphogenesis. Furthermore, we found that a key morphogenetic signaling pathway, the Wnt/PCP pathway, was implicated in the apical accumulation of Rho and regulation of cell shape in the neural plate, suggesting that this signal may be the spatiotemporal regulator of Rho in neural tube formation.


Asunto(s)
Polaridad Celular , Forma de la Célula , Placa Neural/citología , Placa Neural/enzimología , Tubo Neural/citología , Tubo Neural/embriología , Proteínas de Unión al GTP rho/metabolismo , Actomiosina/metabolismo , Animales , Adhesión Celular , Embrión de Pollo , Embrión no Mamífero/citología , Embrión no Mamífero/ultraestructura , Activación Enzimática , Miosina Tipo II/metabolismo , Placa Neural/embriología , Placa Neural/ultraestructura , Tubo Neural/enzimología , Tubo Neural/ultraestructura , Neurulación , Transporte de Proteínas , Proteínas Wnt/metabolismo , Xenopus/embriología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda