Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 5.593
Filtrar
Más filtros

Colección SES
Publication year range
1.
Cell ; 184(4): 1081-1097.e19, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33606978

RESUMEN

Mutations in DNA damage response (DDR) genes endanger genome integrity and predispose to cancer and genetic disorders. Here, using CRISPR-dependent cytosine base editing screens, we identify > 2,000 sgRNAs that generate nucleotide variants in 86 DDR genes, resulting in altered cellular fitness upon DNA damage. Among those variants, we discover loss- and gain-of-function mutants in the Tudor domain of the DDR regulator 53BP1 that define a non-canonical surface required for binding the deubiquitinase USP28. Moreover, we characterize variants of the TRAIP ubiquitin ligase that define a domain, whose loss renders cells resistant to topoisomerase I inhibition. Finally, we identify mutations in the ATM kinase with opposing genome stability phenotypes and loss-of-function mutations in the CHK2 kinase previously categorized as variants of uncertain significance for breast cancer. We anticipate that this resource will enable the discovery of additional DDR gene functions and expedite studies of DDR variants in human disease.


Asunto(s)
Daño del ADN , Edición Génica , Pruebas Genéticas , Secuencia de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Camptotecina/farmacología , Línea Celular , Daño del ADN/genética , Reparación del ADN/genética , Femenino , Humanos , Mutación/genética , Fenotipo , Unión Proteica , Dominios Proteicos , ARN Guía de Kinetoplastida/genética , Inhibidores de Topoisomerasa/farmacología , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Mol Cell ; 82(3): 585-597.e11, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120648

RESUMEN

Cullin-RING E3 ligases (CRLs) are essential ubiquitylation enzymes that combine a catalytic core built around cullin scaffolds with ∼300 exchangeable substrate adaptors. To ensure robust signal transduction, cells must constantly form new CRLs by pairing substrate-bound adaptors with their cullins, but how this occurs at the right time and place is still poorly understood. Here, we show that formation of individual CRL complexes is a tightly regulated process. Using CUL3KLHL12 as a model, we found that its co-adaptor PEF1-ALG2 initiates CRL3 formation by releasing KLHL12 from an assembly inhibitor at the endoplasmic reticulum, before co-adaptor monoubiquitylation stabilizes the enzyme for substrate modification. As the co-adaptor also helps recruit substrates, its role in CRL assembly couples target recognition to ubiquitylation. We propose that regulators dedicated to specific CRLs, such as assembly inhibitors or co-adaptors, cooperate with target-agnostic adaptor exchange mechanisms to establish E3 ligase complexes that control metazoan development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Cullin/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Cullin/genética , Células HEK293 , Humanos , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
3.
Genes Dev ; 36(17-18): 1016-1030, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302555

RESUMEN

Deubiquitylating enzymes (DUBs) remove ubiquitin chains from proteins and regulate protein stability and function. USP7 is one of the most extensively studied DUBs, since USP7 has several well-known substrates important for cancer progression, such as MDM2, N-MYC, and PTEN. Thus, USP7 is a promising drug target. However, systematic identification of USP7 substrates has not yet been performed. In this study, we carried out proteome profiling with label-free quantification in control and single/double-KO cells of USP7and its closest homolog, USP47 Our proteome profiling for the first time revealed the proteome changes caused by USP7 and/or USP47 depletion. Combining protein profiling, transcriptome analysis, and tandem affinity purification of USP7-associated proteins, we compiled a list of 20 high-confidence USP7 substrates that includes known and novel USP7 substrates. We experimentally validated MGA and PHIP as new substrates of USP7. We further showed that MGA deletion reduced cell proliferation, similar to what was observed in cells with USP7 deletion. In conclusion, our proteome-wide analysis uncovered potential USP7 substrates, providing a resource for further functional studies.


Asunto(s)
Proteómica , Ubiquitina Tiolesterasa , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteoma , Ubiquitina/metabolismo , Ubiquitinación
4.
Nat Immunol ; 18(7): 780-790, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28553951

RESUMEN

The acquisition of a protective vertebrate immune system hinges on the efficient generation of a diverse but self-tolerant repertoire of T cells by the thymus through mechanisms that remain incompletely resolved. Here we identified the endosomal-sorting-complex-required-for-transport (ESCRT) protein CHMP5, known to be required for the formation of multivesicular bodies, as a key sensor of thresholds for signaling via the T cell antigen receptor (TCR) that was essential for T cell development. CHMP5 enabled positive selection by promoting post-selection thymocyte survival in part through stabilization of the pro-survival protein Bcl-2. Accordingly, loss of CHMP5 in thymocyte precursor cells abolished T cell development, a phenotype that was 'rescued' by genetic deletion of the pro-apoptotic protein Bim or transgenic expression of Bcl-2. Mechanistically, positive selection resulted in the stabilization of CHMP5 by inducing its interaction with the deubiquitinase USP8. Our results thus identify CHMP5 as an essential component of the post-translational machinery required for T cell development.


Asunto(s)
Diferenciación Celular/inmunología , Complejos de Clasificación Endosomal Requeridos para el Transporte/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Timocitos/inmunología , Animales , Proteína 11 Similar a Bcl2/inmunología , Endopeptidasas/inmunología , Immunoblotting , Inmunoprecipitación , Ratones , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-bcl-2/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/inmunología , Linfocitos T/citología , Timocitos/citología , Ubiquitina Tiolesterasa/inmunología
5.
Nature ; 616(7955): 176-182, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36991118

RESUMEN

Repression of gene expression by protein complexes of the Polycomb group is a fundamental mechanism that governs embryonic development and cell-type specification1-3. The Polycomb repressive deubiquitinase (PR-DUB) complex removes the ubiquitin moiety from monoubiquitinated histone H2A K119 (H2AK119ub1) on the nucleosome4, counteracting the ubiquitin E3 ligase activity of Polycomb repressive complex 1 (PRC1)5 to facilitate the correct silencing of genes by Polycomb proteins and safeguard active genes from inadvertent silencing by PRC1 (refs. 6-9). The intricate biological function of PR-DUB requires accurate targeting of H2AK119ub1, but PR-DUB can deubiquitinate monoubiquitinated free histones and peptide substrates indiscriminately; the basis for its exquisite nucleosome-dependent substrate specificity therefore remains unclear. Here we report the cryo-electron microscopy structure of human PR-DUB, composed of BAP1 and ASXL1, in complex with the chromatosome. We find that ASXL1 directs the binding of the positively charged C-terminal extension of BAP1 to nucleosomal DNA and histones H3-H4 near the dyad, an addition to its role in forming the ubiquitin-binding cleft. Furthermore, a conserved loop segment of the catalytic domain of BAP1 is situated near the H2A-H2B acidic patch. This distinct nucleosome-binding mode displaces the C-terminal tail of H2A from the nucleosome surface, and endows PR-DUB with the specificity for H2AK119ub1.


Asunto(s)
Enzimas Desubicuitinizantes , Histonas , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Humanos , Microscopía por Crioelectrón , Histonas/química , Histonas/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Complejo Represivo Polycomb 1/química , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/ultraestructura , Proteínas del Grupo Polycomb/química , Proteínas del Grupo Polycomb/metabolismo , Proteínas del Grupo Polycomb/ultraestructura , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/ultraestructura , Ubiquitinación , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Represoras/ultraestructura , Dominio Catalítico , Enzimas Desubicuitinizantes/clasificación , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/ultraestructura , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura
6.
Mol Cell ; 81(20): 4176-4190.e6, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34529927

RESUMEN

Of the eight distinct polyubiquitin (polyUb) linkages that can be assembled, the roles of K48-linked polyUb (K48-polyUb) are the most established, with K48-polyUb modified proteins being targeted for degradation. MINDY1 and MINDY2 are members of the MINDY family of deubiquitinases (DUBs) that have exquisite specificity for cleaving K48-polyUb, yet we have a poor understanding of their catalytic mechanism. Here, we analyze the crystal structures of MINDY1 and MINDY2 alone and in complex with monoUb, di-, and penta-K48-polyUb, identifying 5 distinct Ub binding sites in the catalytic domain that explain how these DUBs sense both Ub chain length and linkage type to cleave K48-polyUb chains. The activity of MINDY1/2 is inhibited by the Cys-loop, and we find that substrate interaction relieves autoinhibition to activate these DUBs. We also find that MINDY1/2 use a non-canonical catalytic triad composed of Cys-His-Thr. Our findings highlight multiple layers of regulation modulating DUB activity in MINDY1 and MINDY2.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Poliubiquitina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía , Enzimas Desubicuitinizantes/genética , Activación Enzimática , Humanos , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Ubiquitina Tiolesterasa/genética , Ubiquitinación
7.
Mol Cell ; 81(17): 3526-3541.e8, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34186021

RESUMEN

BAP1 is mutated or deleted in many cancer types, including mesothelioma, uveal melanoma, and cholangiocarcinoma. It is the catalytic subunit of the PR-DUB complex, which removes PRC1-mediated H2AK119ub1, essential for maintaining transcriptional repression. However, the precise relationship between BAP1 and Polycombs remains elusive. Using embryonic stem cells, we show that BAP1 restricts H2AK119ub1 deposition to Polycomb target sites. This increases the stability of Polycomb with their targets and prevents diffuse accumulation of H2AK119ub1 and H3K27me3. Loss of BAP1 results in a broad increase in H2AK119ub1 levels that is primarily dependent on PCGF3/5-PRC1 complexes. This titrates PRC2 away from its targets and stimulates H3K27me3 accumulation across the genome, leading to a general chromatin compaction. This provides evidence for a unifying model that resolves the apparent contradiction between BAP1 catalytic activity and its role in vivo, uncovering molecular vulnerabilities that could be useful for BAP1-related pathologies.


Asunto(s)
Cromatina/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Línea Celular/metabolismo , Cromatina/genética , Cromatina/fisiología , Células Madre Embrionarias/metabolismo , Heterocromatina , Histonas/metabolismo , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/fisiología , Ubiquitinación
8.
Genes Dev ; 35(9-10): 749-770, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888563

RESUMEN

Histone-modifying systems play fundamental roles in gene regulation and the development of multicellular organisms. Histone modifications that are enriched at gene regulatory elements have been heavily studied, but the function of modifications found more broadly throughout the genome remains poorly understood. This is exemplified by histone H2A monoubiquitylation (H2AK119ub1), which is enriched at Polycomb-repressed gene promoters but also covers the genome at lower levels. Here, using inducible genetic perturbations and quantitative genomics, we found that the BAP1 deubiquitylase plays an essential role in constraining H2AK119ub1 throughout the genome. Removal of BAP1 leads to pervasive genome-wide accumulation of H2AK119ub1, which causes widespread reductions in gene expression. We show that elevated H2AK119ub1 preferentially counteracts Ser5 phosphorylation on the C-terminal domain of RNA polymerase II at gene regulatory elements and causes reductions in transcription and transcription-associated histone modifications. Furthermore, failure to constrain pervasive H2AK119ub1 compromises Polycomb complex occupancy at a subset of Polycomb target genes, which leads to their derepression, providing a potential molecular rationale for why the BAP1 ortholog in Drosophila has been characterized as a Polycomb group gene. Together, these observations reveal that the transcriptional potential of the genome can be modulated by regulating the levels of a pervasive histone modification.


Asunto(s)
Regulación de la Expresión Génica/genética , Genoma/genética , Histonas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Animales , Línea Celular , Células HEK293 , Código de Histonas/genética , Histonas/genética , Humanos , Ratones , Células Madre Embrionarias de Ratones , Fosforilación/genética , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo
9.
Genes Dev ; 35(19-20): 1325-1326, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599002

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Virtually all PDAC harbors an oncogenic mutation in the KRAS gene, making it the prime target for therapy. Most previous attempts to inhibit KRAS directly have been disappointing, but recent success in targeting some KRAS mutants presages a new era in PDAC therapy. Models of PDAC have predicted that identifying KRAS inhibitor resistance mechanisms will be critical. In this issue of Genes & Development, Hou and colleagues (pp. 1327-1332) identify one such mechanism in which the deubiquitinase USP21 up-regulates the nutrient-scavenging process of macropinocytosis, rescuing PDAC cells from Kras extinction.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Ubiquitina Tiolesterasa/genética
10.
Genes Dev ; 35(19-20): 1327-1332, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34531315

RESUMEN

Activating mutations in KRAS (KRAS*) are present in nearly all pancreatic ductal adenocarcinoma (PDAC) cases and critical for tumor maintenance. By using an inducible KRAS* PDAC mouse model, we identified a deubiquitinase USP21-driven resistance mechanism to anti-KRAS* therapy. USP21 promotes KRAS*-independent tumor growth via its regulation of MARK3-induced macropinocytosis, which serves to maintain intracellular amino acid levels for anabolic growth. The USP21-mediated KRAS* bypass, coupled with the frequent amplification of USP21 in human PDAC tumors, encourages the assessment of USP21 as a novel drug target as well as a potential parameter that may affect responsiveness to emergent anti-KRAS* therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Enzimas Desubicuitinizantes/metabolismo , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ubiquitina Tiolesterasa
11.
Nature ; 605(7910): 567-574, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477760

RESUMEN

Proteasomal degradation of ubiquitylated proteins is tightly regulated at multiple levels1-3. A primary regulatory checkpoint is the removal of ubiquitin chains from substrates by the deubiquitylating enzyme ubiquitin-specific protease 14 (USP14), which reversibly binds the proteasome and confers the ability to edit and reject substrates. How USP14 is activated and regulates proteasome function remain unknown4-7. Here we present high-resolution cryo-electron microscopy structures of human USP14 in complex with the 26S proteasome in 13 distinct conformational states captured during degradation of polyubiquitylated proteins. Time-resolved cryo-electron microscopy analysis of the conformational continuum revealed two parallel pathways of proteasome state transitions induced by USP14, and captured transient conversion of substrate-engaged intermediates into substrate-inhibited intermediates. On the substrate-engaged pathway, ubiquitin-dependent activation of USP14 allosterically reprograms the conformational landscape of the AAA-ATPase motor and stimulates opening of the core particle gate8-10, enabling observation of a near-complete cycle of asymmetric ATP hydrolysis around the ATPase ring during processive substrate unfolding. Dynamic USP14-ATPase interactions decouple the ATPase activity from RPN11-catalysed deubiquitylation11-13 and kinetically introduce three regulatory checkpoints on the proteasome, at the steps of ubiquitin recognition, substrate translocation initiation and ubiquitin chain recycling. These findings provide insights into the complete functional cycle of the USP14-regulated proteasome and establish mechanistic foundations for the discovery of USP14-targeted therapies.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Adenosina Trifosfatasas/metabolismo , Microscopía por Crioelectrón , Humanos , Conformación Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/metabolismo
12.
Mol Cell ; 80(5): 796-809.e9, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33156996

RESUMEN

The linkage, length, and architecture of ubiquitin (Ub) chains are all important variables in providing tight control over many biological paradigms. There are clear roles for branched architectures in regulating proteasome-mediated degradation, but the proteins that selectively recognize and process these atypical chains are unknown. Here, using synthetic and enzyme-derived ubiquitin chains along with intact mass spectrometry, we report that UCH37/UCHL5, a proteasome-associated deubiquitinase, cleaves K48 branched chains. The activity and selectivity toward branched chains is markedly enhanced by the proteasomal Ub receptor RPN13/ADRM1. Using reconstituted proteasome complexes, we find that chain debranching promotes degradation of substrates modified with branched chains under multi-turnover conditions. These results are further supported by proteome-wide pulse-chase experiments, which show that the loss of UCH37 activity impairs global protein turnover. Our work therefore defines UCH37 as a debranching deubiquitinase important for promoting proteasomal degradation.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/genética , Ubiquitina Tiolesterasa/genética
13.
Mol Cell ; 77(6): 1193-1205.e5, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31981475

RESUMEN

Ribosome-associated quality control (RQC) purges aberrant mRNAs and nascent polypeptides in a multi-step molecular process initiated by the E3 ligase ZNF598 through sensing of ribosomes collided at aberrant mRNAs and monoubiquitination of distinct small ribosomal subunit proteins. We show that G3BP1-family-USP10 complexes are required for deubiquitination of RPS2, RPS3, and RPS10 to rescue modified 40S subunits from programmed degradation. Knockout of USP10 or G3BP1 family proteins increased lysosomal ribosomal degradation and perturbed ribosomal subunit stoichiometry, both of which were rescued by a single K214R substitution of RPS3. While the majority of RPS2 and RPS3 monoubiquitination resulted from ZNF598-dependent sensing of ribosome collisions initiating RQC, another minor pathway contributed to their monoubiquitination. G3BP1 family proteins have long been considered RNA-binding proteins, however, our results identified 40S subunits and associated mRNAs as their predominant targets, a feature shared by stress granules to which G3BP1 family proteins localize under stress.


Asunto(s)
ADN Helicasas/metabolismo , Lisosomas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Biosíntesis de Proteínas , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Mensajero/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN Helicasas/genética , Células HEK293 , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , ARN Mensajero/genética , ARN Ribosómico 18S , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Ubiquitina Tiolesterasa/genética , Ubiquitinación
14.
Mol Cell ; 77(5): 951-969.e9, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31995728

RESUMEN

AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Metabolismo Energético , Galectinas/metabolismo , Lisosomas/enzimología , Ubiquitina/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adolescente , Adulto , Animales , Autofagia/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Activación Enzimática , Femenino , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Hipoglucemiantes/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/microbiología , Lisosomas/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Metformina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/patogenicidad , Transducción de Señal , Células THP-1 , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Adulto Joven
15.
Mol Cell ; 77(5): 970-984.e7, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31982308

RESUMEN

Cytosolic caspase-8 is a mediator of death receptor signaling. While caspase-8 expression is lost in some tumors, it is increased in others, indicating a conditional pro-survival function of caspase-8 in cancer. Here, we show that tumor cells employ DNA-damage-induced nuclear caspase-8 to override the p53-dependent G2/M cell-cycle checkpoint. Caspase-8 is upregulated and localized to the nucleus in multiple human cancers, correlating with treatment resistance and poor clinical outcome. Depletion of caspase-8 causes G2/M arrest, stabilization of p53, and induction of p53-dependent intrinsic apoptosis in tumor cells. In the nucleus, caspase-8 cleaves and inactivates the ubiquitin-specific peptidase 28 (USP28), preventing USP28 from de-ubiquitinating and stabilizing wild-type p53. This results in de facto p53 protein loss, switching cell fate from apoptosis toward mitosis. In summary, our work identifies a non-canonical role of caspase-8 exploited by cancer cells to override the p53-dependent G2/M cell-cycle checkpoint.


Asunto(s)
Caspasa 8/metabolismo , Núcleo Celular/enzimología , Proliferación Celular , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias/enzimología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Antineoplásicos/farmacología , Apoptosis , Caspasa 8/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Núcleo Celular/patología , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Células PC-3 , Estabilidad Proteica , Transducción de Señal , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Ubiquitina Tiolesterasa/genética
16.
Genes Dev ; 34(19-20): 1310-1315, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32943575

RESUMEN

SNAI2/SLUG, a metastasis-promoting transcription factor, is a labile protein that is degraded through the ubiquitin proteasome degradation system. Here, we conducted comprehensive gain- and loss-of-function screens using a human DUB cDNA library of 65 genes and an siRNA library of 98 genes, and identified USP20 as a deubiquitinase (DUB) that regulates SNAI2 ubiquitination and stability. Further investigation of USP20 demonstrated its function in promoting migration, invasion, and metastasis of breast cancer. USP20 positively correlates with SNAI2 protein level in breast tumor samples, and higher USP20 expression is associated with poor prognosis in ER- breast cancer patients.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Metástasis de la Neoplasia/genética , Factores de Transcripción de la Familia Snail/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Neoplasias de la Mama/genética , Movimiento Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Biblioteca de Genes , Humanos , Invasividad Neoplásica/genética , Estabilidad Proteica , Proteolisis , ARN Interferente Pequeño/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitinación
17.
Nat Immunol ; 16(9): 950-60, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26214742

RESUMEN

The modification of proteins by ubiquitin has a major role in cells of the immune system and is counteracted by various deubiquitinating enzymes (DUBs) with poorly defined functions. Here we identified the ubiquitin-specific protease USP8 as a regulatory component of the T cell antigen receptor (TCR) signalosome that interacted with the adaptor Gads and the regulatory molecule 14-3-3ß. Caspase-dependent processing of USP8 occurred after stimulation of the TCR. T cell-specific deletion of USP8 in mice revealed that USP8 was essential for thymocyte maturation and upregulation of the gene encoding the cytokine receptor IL-7Rα mediated by the transcription factor Foxo1. Mice with T cell-specific USP8 deficiency developed colitis that was promoted by disturbed T cell homeostasis, a predominance of CD8(+) γδ T cells in the intestine and impaired regulatory T cell function. Collectively, our data reveal an unexpected role for USP8 as an immunomodulatory DUB in T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Endopeptidasas/inmunología , Complejos de Clasificación Endosomal Requeridos para el Transporte/inmunología , Timocitos/inmunología , Ubiquitina Tiolesterasa/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular/genética , Colitis/genética , Colitis/inmunología , Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Homeostasis , Humanos , Células Jurkat , Ratones , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Interleucina-7/inmunología , Receptores de Interleucina-7/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Timocitos/metabolismo , Ubiquitina Tiolesterasa/genética
18.
Mol Cell ; 74(3): 421-435.e10, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30926243

RESUMEN

Deubiquitinases have emerged as promising drug targets for cancer therapy. The two DUBs USP25 and USP28 share high similarity but vary in their cellular functions. USP28 is known for its tumor-promoting role, whereas USP25 is a regulator of the innate immune system and, recently, a role in tumorigenesis was proposed. We solved the structures of the catalytic domains of both proteins and established substantial differences in their activities. While USP28 is a constitutively active dimer, USP25 presents an auto-inhibited tetramer. Our data indicate that the activation of USP25 is not achieved through substrate or ubiquitin binding. USP25 cancer-associated mutations lead to activation in vitro and in vivo, thereby providing a functional link between auto-inhibition and the cancer-promoting role of the enzyme. Our work led to the identification of significant differences between USP25 and USP28 and provided the molecular basis for the development of new and highly specific anti-cancer drugs.


Asunto(s)
Carcinogénesis/genética , Neoplasias/genética , Ubiquitina Tiolesterasa/genética , Secuencia de Aminoácidos/genética , Dominio Catalítico/genética , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/genética , Humanos , Mutación/genética , Neoplasias/tratamiento farmacológico , Unión Proteica/genética , Conformación Proteica , Multimerización de Proteína/genética , Ubiquitina/genética , Ubiquitina Tiolesterasa/química
19.
Mol Cell ; 74(3): 436-451.e7, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30926242

RESUMEN

The evolutionarily related deubiquitinating enzymes (DUBs) USP25 and USP28 comprise an identical overall domain architecture but are functionally non-redundant: USP28 stabilizes c-MYC and other nuclear proteins, and USP25 regulates inflammatory TRAF signaling. We here compare molecular features of USP25 and USP28. Active enzymes form distinctively shaped dimers, with a dimerizing insertion spatially separating independently active catalytic domains. In USP25, but not USP28, two dimers can form an autoinhibited tetramer, where a USP25-specific, conserved insertion sequence blocks ubiquitin binding. In full-length enzymes, a C-terminal domain with a previously unknown fold has no impact on oligomerization, but N-terminal regions affect the dimer-tetramer equilibrium in vitro. We confirm oligomeric states of USP25 and USP28 in cells and show that modulating oligomerization affects substrate stabilization in accordance with in vitro activity data. Our work highlights how regions outside of the catalytic domain enable a conceptually intriguing interplay of DUB oligomerization and activity.


Asunto(s)
Inflamación/genética , Conformación Proteica , Ubiquitina Tiolesterasa/genética , Secuencia de Aminoácidos/genética , Dominio Catalítico/genética , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/genética , Humanos , Inflamación/patología , Mutación/genética , Unión Proteica/genética , Dominios Proteicos/genética , Multimerización de Proteína/genética , Proteínas Proto-Oncogénicas c-myb/química , Proteínas Proto-Oncogénicas c-myb/genética , Transducción de Señal/genética , Especificidad por Sustrato , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Ubiquitina/genética , Ubiquitina Tiolesterasa/química
20.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739798

RESUMEN

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Asunto(s)
Péptidos , Plasmodium falciparum , Proteínas Protozoarias , Ubiquitina Tiolesterasa , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo , Plasmodium falciparum/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/genética , Humanos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/antagonistas & inhibidores , Antimaláricos/farmacología , Antimaláricos/química , Ubiquitina/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda