Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 12.474
Filtrar
Más filtros

Publication year range
1.
Cell ; 187(19): 5228-5237.e12, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39173631

RESUMEN

GlycoRNA consists of RNAs modified with secretory N-glycans that are presented on the cell surface. Although previous work supported a covalent linkage between RNA and glycans, the direct chemical nature of the RNA-glycan connection was not described. Here, we develop a sensitive and scalable protocol to detect and characterize native glycoRNAs. Leveraging RNA-optimized periodate oxidation and aldehyde ligation (rPAL) and sequential window acquisition of all theoretical mass spectra (SWATH-MS), we identified the modified RNA base 3-(3-amino-3-carboxypropyl)uridine (acp3U) as a site of attachment of N-glycans in glycoRNA. rPAL offers sensitivity and robustness as an approach for characterizing direct glycan-RNA linkages occurring in cells, and its flexibility will enable further exploration of glycoRNA biology.


Asunto(s)
Polisacáridos , Polisacáridos/metabolismo , Polisacáridos/química , Uridina/metabolismo , Uridina/química , Humanos , ARN/metabolismo , ARN/química , Oxidación-Reducción
2.
Cell ; 179(6): 1264-1275.e13, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31778653

RESUMEN

TLR8 is among the highest-expressed pattern-recognition receptors in the human myeloid compartment, yet its mode of action is poorly understood. TLR8 engages two distinct ligand binding sites to sense RNA degradation products, although it remains unclear how these ligands are formed in cellulo in the context of complex RNA molecule sensing. Here, we identified the lysosomal endoribonuclease RNase T2 as a non-redundant upstream component of TLR8-dependent RNA recognition. RNase T2 activity is required for rendering complex single-stranded, exogenous RNA molecules detectable for TLR8. This is due to RNase T2's preferential cleavage of single-stranded RNA molecules between purine and uridine residues, which critically contributes to the supply of catabolic uridine and the generation of purine-2',3'-cyclophosphate-terminated oligoribonucleotides. Thus-generated molecules constitute agonistic ligands for the first and second binding pocket of TLR8. Together, these results establish the identity and origin of the RNA-derived molecular pattern sensed by TLR8.


Asunto(s)
Endorribonucleasas/metabolismo , Proteolisis , Receptor Toll-Like 8/metabolismo , Secuencias de Aminoácidos , Secuencia de Bases , Línea Celular , Endorribonucleasas/deficiencia , Humanos , Modelos Moleculares , Monocitos/metabolismo , Células Mieloides/metabolismo , Isótopos de Nitrógeno , Oligonucleótidos/metabolismo , Purinas/metabolismo , ARN/metabolismo , Staphylococcus aureus/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/química , Uridina/metabolismo
3.
Cell ; 174(6): 1537-1548.e29, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30122351

RESUMEN

LINE-1 retrotransposition is tightly restricted by layers of regulatory control, with epigenetic pathways being the best characterized. Looking at post-transcriptional regulation, we now show that LINE-1 mRNA 3' ends are pervasively uridylated in various human cellular models and in mouse testes. TUT4 and TUT7 uridyltransferases catalyze the modification and function in cooperation with the helicase/RNPase MOV10 to counteract the RNA chaperone activity of the L1-ORF1p retrotransposon protein. Uridylation potently restricts LINE-1 retrotransposition by a multilayer mechanism depending on differential subcellular localization of the uridyltransferases. We propose that uridine residues added by TUT7 in the cytoplasm inhibit initiation of reverse transcription of LINE-1 mRNAs once they are reimported to the nucleus, whereas uridylation by TUT4, which is enriched in cytoplasmic foci, destabilizes mRNAs. These results provide a model for the post-transcriptional restriction of LINE-1, revealing a key physiological role for TUT4/7-mediated uridylation in maintaining genome stability.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Uridina/metabolismo , Animales , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Ratones , Proteínas Nucleares/genética , Unión Proteica , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/genética , ARN Helicasas/metabolismo , Interferencia de ARN , ARN Nucleotidiltransferasas/antagonistas & inhibidores , ARN Nucleotidiltransferasas/genética , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Retroelementos/genética
4.
Cell ; 161(7): 1606-18, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26052047

RESUMEN

Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity.


Asunto(s)
Caenorhabditis elegans/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Codón , Agregado de Proteínas , Ribosomas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Estrés Fisiológico , Uridina/genética
5.
Mol Cell ; 82(2): 404-419.e9, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34798057

RESUMEN

The epitranscriptome has emerged as a new fundamental layer of control of gene expression. Nevertheless, the determination of the transcriptome-wide occupancy and function of RNA modifications remains challenging. Here we have developed Rho-seq, an integrated pipeline detecting a range of modifications through differential modification-dependent rhodamine labeling. Using Rho-seq, we confirm that the reduction of uridine to dihydrouridine (D) by the Dus reductase enzymes targets tRNAs in E. coli and fission yeast. We find that the D modification is also present on fission yeast mRNAs, particularly those encoding cytoskeleton-related proteins, which is supported by large-scale proteome analyses and ribosome profiling. We show that the α-tubulin encoding mRNA nda2 undergoes Dus3-dependent dihydrouridylation, which affects its translation. The absence of the modification on nda2 mRNA strongly impacts meiotic chromosome segregation, resulting in low gamete viability. Applying Rho-seq to human cells revealed that tubulin mRNA dihydrouridylation is evolutionarily conserved.


Asunto(s)
Segregación Cromosómica , Escherichia coli/genética , Meiosis , Procesamiento Postranscripcional del ARN , ARN Bacteriano/genética , ARN de Hongos/genética , ARN Mensajero/genética , Schizosaccharomyces/genética , Uridina/metabolismo , Cromosomas Bacterianos , Cromosomas Fúngicos , Cromosomas Humanos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Células HCT116 , Humanos , Oxidación-Reducción , ARN Bacteriano/metabolismo , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Análisis de Secuencia de ARN , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
6.
Genes Dev ; 36(1-2): 70-83, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34916304

RESUMEN

Site-specific pseudouridylation of human ribosomal and spliceosomal RNAs is directed by H/ACA guide RNAs composed of two hairpins carrying internal pseudouridylation guide loops. The distal "antisense" sequences of the pseudouridylation loop base-pair with the target RNA to position two unpaired target nucleotides 5'-UN-3', including the 5' substrate U, under the base of the distal stem topping the guide loop. Therefore, each pseudouridylation loop is expected to direct synthesis of a single pseudouridine (Ψ) in the target sequence. However, in this study, genetic depletion and restoration and RNA mutational analyses demonstrate that at least four human H/ACA RNAs (SNORA53, SNORA57, SCARNA8, and SCARNA1) carry pseudouridylation loops supporting efficient and specific synthesis of two consecutive pseudouridines (ΨΨ or ΨNΨ) in the 28S (Ψ3747/Ψ3749), 18S (Ψ1045/Ψ1046), and U2 (Ψ43/Ψ44 and Ψ89/Ψ91) RNAs, respectively. In order to position two substrate Us for pseudouridylation, the dual guide loops form alternative base-pairing interactions with their target RNAs. This remarkable structural flexibility of dual pseudouridylation loops provides an unexpected versatility for RNA-directed pseudouridylation without compromising its efficiency and accuracy. Besides supporting synthesis of at least 6% of human ribosomal and spliceosomal Ψs, evidence indicates that dual pseudouridylation loops also participate in pseudouridylation of yeast and archaeal rRNAs.


Asunto(s)
Seudouridina , ARN Guía de Kinetoplastida , Humanos , Conformación de Ácido Nucleico , Seudouridina/química , ARN/química , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , ARN Ribosómico , Uridina
7.
Nature ; 618(7963): 151-158, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198494

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.


Asunto(s)
Glucosa , Neoplasias Pancreáticas , Ribosa , Microambiente Tumoral , Uridina , Animales , Ratones , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Ribosa/metabolismo , Uridina/química , Glucosa/deficiencia , División Celular , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas , Uridina Fosforilasa/deficiencia , Uridina Fosforilasa/genética , Uridina Fosforilasa/metabolismo , Humanos
8.
Trends Biochem Sci ; 49(1): 12-27, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38097411

RESUMEN

The uridine modifications pseudouridine (Ψ), dihydrouridine, and 5-methyluridine are present in eukaryotic mRNAs. Many uridine-modifying enzymes are associated with human disease, underscoring the importance of uncovering the functions of uridine modifications in mRNAs. These modified uridines have chemical properties distinct from those of canonical uridines, which impact RNA structure and RNA-protein interactions. Ψ, the most abundant of these uridine modifications, is present across (pre-)mRNAs. Recent work has shown that many Ψs are present at intermediate to high stoichiometries that are likely conducive to function and at locations that are poised to influence pre-/mRNA processing. Technological innovations and mechanistic investigations are unveiling the functions of uridine modifications in pre-mRNA splicing, translation, and mRNA stability, which are discussed in this review.


Asunto(s)
Seudouridina , ARN , Humanos , Seudouridina/genética , Seudouridina/metabolismo , ARN Mensajero/metabolismo , ARN/metabolismo , Uridina/química , Uridina/metabolismo , Procesamiento Postranscripcional del ARN , Precursores del ARN/genética
9.
Cell ; 154(2): 416-29, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870129

RESUMEN

Protein translation is an energetically demanding process that must be regulated in response to changes in nutrient availability. Herein, we report that intracellular methionine and cysteine availability directly controls the thiolation status of wobble-uridine (U34) nucleotides present on lysine, glutamine, or glutamate tRNAs to regulate cellular translational capacity and metabolic homeostasis. tRNA thiolation is important for growth under nutritionally challenging environments and required for efficient translation of genes enriched in lysine, glutamine, and glutamate codons, which are enriched in proteins important for translation and growth-specific processes. tRNA thiolation is downregulated during sulfur starvation in order to decrease sulfur consumption and growth, and its absence leads to a compensatory increase in enzymes involved in methionine, cysteine, and lysine biosynthesis. Thus, tRNA thiolation enables cells to modulate translational capacity according to the availability of sulfur amino acids, establishing a functional significance for this conserved tRNA nucleotide modification in cell growth control.


Asunto(s)
Aminoácidos Sulfúricos/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo , Regulación hacia Abajo , ARN de Transferencia/química , Saccharomyces cerevisiae/crecimiento & desarrollo
10.
Nature ; 605(7909): 372-379, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477761

RESUMEN

Post-transcriptional modifications have critical roles in tRNA stability and function1-4. In thermophiles, tRNAs are heavily modified to maintain their thermal stability under extreme growth temperatures5,6. Here we identified 2'-phosphouridine (Up) at position 47 of tRNAs from thermophilic archaea. Up47 confers thermal stability and nuclease resistance to tRNAs. Atomic structures of native archaeal tRNA showed a unique metastable core structure stabilized by Up47. The 2'-phosphate of Up47 protrudes from the tRNA core and prevents backbone rotation during thermal denaturation. In addition, we identified the arkI gene, which encodes an archaeal RNA kinase responsible for Up47 formation. Structural studies showed that ArkI has a non-canonical kinase motif surrounded by a positively charged patch for tRNA binding. A knockout strain of arkI grew slowly at high temperatures and exhibited a synthetic growth defect when a second tRNA-modifying enzyme was depleted. We also identified an archaeal homologue of KptA as an eraser that efficiently dephosphorylates Up47 in vitro and in vivo. Taken together, our findings show that Up47 is a reversible RNA modification mediated by ArkI and KptA that fine-tunes the structural rigidity of tRNAs under extreme environmental conditions.


Asunto(s)
Archaea , ARN de Transferencia , Termotolerancia , Archaea/genética , Ambientes Extremos , Fosforilación , Procesamiento Postranscripcional del ARN , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Uridina
11.
Plant Cell ; 36(3): 727-745, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38000897

RESUMEN

Cytidine (C)-to-uridine (U) RNA editing in plant organelles relies on specific RNA-binding pentatricopeptide repeat (PPR) proteins. In the moss Physcomitrium patens, all such RNA editing factors feature a C-terminal DYW domain that acts as the cytidine deaminase for C-to-U conversion. PPR78 of Physcomitrium targets 2 mitochondrial editing sites, cox1eU755SL and rps14eU137SL. Remarkably, the latter is edited to highly variable degrees in different mosses. Here, we aimed to unravel the coevolution of PPR78 and its 2 target sites in mosses. Heterologous complementation in a Physcomitrium knockout line revealed that the variable editing of rps14eU137SL depends on the PPR arrays of different PPR78 orthologues but not their C-terminal domains. Intriguingly, PPR78 has remained conserved despite the simultaneous loss of editing at both known targets among Hypnales (feather mosses), suggesting it serves an additional function. Using a recently established RNA editing assay in Escherichia coli, we confirmed site-specific RNA editing by PPR78 in the bacterium and identified 4 additional off-targets in the bacterial transcriptome. Based on conservation profiles, we predicted ccmFNeU1465RC as a candidate editing target of PPR78 in moss mitochondrial transcriptomes. We confirmed editing at this site in several mosses and verified that PPR78 targets ccmFNeU1465RC in the bacterial editing system, explaining the conservation and functional adaptation of PPR78 during moss evolution.


Asunto(s)
Briófitas , Bryopsida , Edición de ARN/genética , Proteínas de Plantas/metabolismo , Briófitas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Citidina/genética , Citidina/metabolismo , Uridina/genética , Uridina/metabolismo , ARN de Planta/metabolismo
12.
Mol Cell ; 75(3): 511-522.e4, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31178353

RESUMEN

Many microRNAs (miRNAs) exist alongside abundant miRNA isoforms (isomiRs), most of which arise from post-maturation sequence modifications such as 3' uridylation. However, the ways in which these sequence modifications affect miRNA function remain poorly understood. Here, using human miR-27a in cell lines as a model, we discovered that a nonfunctional target site unable to base-pair extensively with the miRNA seed sequence can regain function when an upstream adenosine is able to base-pair with a post-transcriptionally added uridine in the miR-27a tail. This tail-U-mediated repression (TUMR) is abolished in cells lacking the uridylation enzymes TUT4 and TUT7, indicating that uridylation alters miRNA function by modulating target recognition. We identified a set of non-canonical targets in human cells that are specifically regulated by uridylated miR-27a. We provide evidence that TUMR expands the targets of other endogenous miRNAs. Our study reveals a function of uridylated isomiRs in regulating non-canonical miRNA targets.


Asunto(s)
Proteínas de Unión al ADN/genética , MicroARNs/genética , ARN Nucleotidiltransferasas/genética , Uridina/genética , Adenosina/genética , Emparejamiento Base/genética , Células HeLa , Humanos , Estabilidad del ARN , Uridina/metabolismo
13.
Mol Cell ; 74(3): 508-520.e4, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30902547

RESUMEN

Circular RNAs (circRNAs) are a class of single-stranded RNAs with a contiguous structure that have enhanced stability and a lack of end motifs necessary for interaction with various cellular proteins. Here, we show that unmodified exogenous circRNA is able to bypass cellular RNA sensors and thereby avoid provoking an immune response in RIG-I and Toll-like receptor (TLR) competent cells and in mice. The immunogenicity and protein expression stability of circRNA preparations are found to be dependent on purity, with small amounts of contaminating linear RNA leading to robust cellular immune responses. Unmodified circRNA is less immunogenic than unmodified linear mRNA in vitro, in part due to the evasion of TLR sensing. Finally, we provide the first demonstration to our knowledge of exogenous circRNA delivery and translation in vivo, and we show that circRNA translation is extended in adipose tissue in comparison to unmodified and uridine-modified linear mRNAs.


Asunto(s)
Proteína 58 DEAD Box/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN/genética , Animales , Proteína 58 DEAD Box/inmunología , Regulación de la Expresión Génica , Redes Reguladoras de Genes/genética , Inmunidad Innata/genética , Ratones , MicroARNs/genética , ARN Circular , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Uridina/genética , Vacunas Sintéticas/genética
14.
Proc Natl Acad Sci U S A ; 121(32): e2401981121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39078675

RESUMEN

Dihydrouridine (D), a prevalent and evolutionarily conserved base in the transcriptome, primarily resides in tRNAs and, to a lesser extent, in mRNAs. Notably, this modification is found at position 2449 in the Escherichia coli 23S rRNA, strategically positioned near the ribosome's peptidyl transferase site. Despite the prior identification, in E. coli genome, of three dihydrouridine synthases (DUS), a set of NADPH and FMN-dependent enzymes known for introducing D in tRNAs and mRNAs, characterization of the enzyme responsible for D2449 deposition has remained elusive. This study introduces a rapid method for detecting D in rRNA, involving reverse transcriptase-blockage at the rhodamine-labeled D2449 site, followed by PCR amplification (RhoRT-PCR). Through analysis of rRNA from diverse E. coli strains, harboring chromosomal or single-gene deletions, we pinpoint the yhiN gene as the ribosomal dihydrouridine synthase, now designated as RdsA. Biochemical characterizations uncovered RdsA as a unique class of flavoenzymes, dependent on FAD and NADH, with a complex structural topology. In vitro assays demonstrated that RdsA dihydrouridylates a short rRNA transcript mimicking the local structure of the peptidyl transferase site. This suggests an early introduction of this modification before ribosome assembly. Phylogenetic studies unveiled the widespread distribution of the yhiN gene in the bacterial kingdom, emphasizing the conservation of rRNA dihydrouridylation. In a broader context, these findings underscore nature's preference for utilizing reduced flavin in the reduction of uridines and their derivatives.


Asunto(s)
Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/química , Uridina/análogos & derivados , Uridina/metabolismo , Uridina/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/química
15.
Proc Natl Acad Sci U S A ; 121(35): e2401743121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159370

RESUMEN

While the centrality of posttranscriptional modifications to RNA biology has long been acknowledged, the function of the vast majority of modified sites remains to be discovered. Illustrative of this, there is not yet a discrete biological role assigned for one of the most highly conserved modifications, 5-methyluridine at position 54 in tRNAs (m5U54). Here, we uncover contributions of m5U54 to both tRNA maturation and protein synthesis. Our mass spectrometry analyses demonstrate that cells lacking the enzyme that installs m5U in the T-loop (TrmA in Escherichia coli, Trm2 in Saccharomyces cerevisiae) exhibit altered tRNA modification patterns. Furthermore, m5U54-deficient tRNAs are desensitized to small molecules that prevent translocation in vitro. This finding is consistent with our observations that relative to wild-type cells, trm2Δ cell growth and transcriptome-wide gene expression are less perturbed by translocation inhibitors. Together our data suggest a model in which m5U54 acts as an important modulator of tRNA maturation and translocation of the ribosome during protein synthesis.


Asunto(s)
Escherichia coli , ARN de Transferencia , Ribosomas , Saccharomyces cerevisiae , Uridina , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ribosomas/metabolismo , Uridina/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Procesamiento Postranscripcional del ARN , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética
16.
RNA ; 30(10): 1356-1373, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39048310

RESUMEN

Splicing is an important step of gene expression in all eukaryotes. Splice sites might be used with different efficiency, giving rise to alternative splicing products. At the same time, splice sites might be used at a variable rate. We used 5-ethynyl uridine labeling to sequence a nascent transcriptome of HeLa cells and deduced the rate of splicing for each donor and acceptor splice site. The following correlation analysis showed a correspondence of primary transcript features with the rate of splicing. Some dependencies we revealed were anticipated, such as a splicing rate decrease with a decreased complementarity of the donor splice site to U1 and acceptor sites to U2 snRNAs. Other dependencies were more surprising, like a negative influence of a distance to the 5' end on the rate of the acceptor splicing site utilization, or the differences in splicing rate between long, short, and RBM17-dependent introns. We also observed a deceleration of last intron splicing with an increase of the distance to the poly(A) site, which might be explained by the cooperativity of the splicing and polyadenylation. Additional analysis of splicing kinetics of SF3B4 knockdown cells suggested the impairment of a U2 snRNA recognition step. As a result, we deconvoluted the effects of several examined features on the splicing rate into a single regression model. The data obtained here are useful for further studies in the field, as they provide general splicing rate dependencies as well as help to justify the existence of slowly removed splice sites.


Asunto(s)
Intrones , Sitios de Empalme de ARN , Empalme del ARN , Humanos , Células HeLa , Cinética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Uridina/metabolismo , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/genética
17.
Plant Cell ; 35(1): 510-528, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36342213

RESUMEN

In nucleotide metabolism, nucleoside kinases recycle nucleosides into nucleotides-a process called nucleoside salvage. Nucleoside kinases for adenosine, uridine, and cytidine have been characterized from many organisms, but kinases for inosine and guanosine salvage are not yet known in eukaryotes and only a few such enzymes have been described from bacteria. Here we identified Arabidopsis thaliana PLASTID NUCLEOSIDE KINASE 1 (PNK1), an enzyme highly conserved in plants and green algae belonging to the Phosphofructokinase B family. We demonstrate that PNK1 from A. thaliana is located in plastids and catalyzes the phosphorylation of inosine, 5-aminoimidazole-4-carboxamide-1-ß-d-ribose (AICA ribonucleoside), and uridine but not guanosine in vitro, and is involved in inosine salvage in vivo. PNK1 mutation leads to increased flux into purine nucleotide catabolism and, especially in the context of defective uridine degradation, to over-accumulation of uridine and UTP as well as growth depression. The data suggest that PNK1 is involved in feedback regulation of purine nucleotide biosynthesis and possibly also pyrimidine nucleotide biosynthesis. We additionally report that cold stress leads to accumulation of purine nucleotides, probably by inducing nucleotide biosynthesis, but that this adjustment of nucleotide homeostasis to environmental conditions is not controlled by PNK1.


Asunto(s)
Inosina , Nucleósidos , Inosina/metabolismo , Inosina/farmacología , Nucleósidos/metabolismo , Nucleótidos , Nucleótidos de Purina/genética , Nucleótidos de Purina/metabolismo , Uridina
18.
Nature ; 582(7810): 60-66, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494078

RESUMEN

The nature of the first genetic polymer is the subject of major debate1. Although the 'RNA world' theory suggests that RNA was the first replicable information carrier of the prebiotic era-that is, prior to the dawn of life2,3-other evidence implies that life may have started with a heterogeneous nucleic acid genetic system that included both RNA and DNA4. Such a theory streamlines the eventual 'genetic takeover' of homogeneous DNA from RNA as the principal information-storage molecule, but requires a selective abiotic synthesis of both RNA and DNA building blocks in the same local primordial geochemical scenario. Here we demonstrate a high-yielding, completely stereo-, regio- and furanosyl-selective prebiotic synthesis of the purine deoxyribonucleosides: deoxyadenosine and deoxyinosine. Our synthesis uses key intermediates in the prebiotic synthesis of the canonical pyrimidine ribonucleosides (cytidine and uridine), and we show that, once generated, the pyrimidines persist throughout the synthesis of the purine deoxyribonucleosides, leading to a mixture of deoxyadenosine, deoxyinosine, cytidine and uridine. These results support the notion that purine deoxyribonucleosides and pyrimidine ribonucleosides may have coexisted before the emergence of life5.


Asunto(s)
ADN/química , Evolución Química , Origen de la Vida , Nucleósidos de Purina/síntesis química , Nucleósidos de Pirimidina/síntesis química , ARN/química , Adenosina/análogos & derivados , Adenosina/química , Citidina/química , ADN/genética , Oxidación-Reducción/efectos de la radiación , Nucleósidos de Purina/química , Nucleósidos de Purina/genética , Nucleósidos de Pirimidina/química , Nucleósidos de Pirimidina/genética , ARN/genética , Uridina/química
19.
Mol Cell ; 69(4): 622-635.e6, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29429924

RESUMEN

TIA1 and TIAL1 encode a family of U-rich element mRNA-binding proteins ubiquitously expressed and conserved in metazoans. Using PAR-CLIP, we determined that both proteins bind target sites with identical specificity in 3' UTRs and introns proximal to 5' as well as 3' splice sites. Double knockout (DKO) of TIA1 and TIAL1 increased target mRNA abundance proportional to the number of binding sites and also caused accumulation of aberrantly spliced mRNAs, most of which are subject to nonsense-mediated decay. Loss of PRKRA by mis-splicing triggered the activation of the double-stranded RNA (dsRNA)-activated protein kinase EIF2AK2/PKR and stress granule formation. Ectopic expression of PRKRA cDNA or knockout of EIF2AK2 in DKO cells rescued this phenotype. Perturbation of maturation and/or stability of additional targets further compromised cell cycle progression. Our study reveals the essential contributions of the TIA1 protein family to the fidelity of mRNA maturation, translation, and RNA-stress-sensing pathways in human cells.


Asunto(s)
Ciclo Celular , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Estrés Fisiológico , Antígeno Intracelular 1 de las Células T/metabolismo , eIF-2 Quinasa/metabolismo , Sistemas CRISPR-Cas , Gránulos Citoplasmáticos/metabolismo , Células HEK293 , Humanos , Sitios de Empalme de ARN , Empalme del ARN , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/antagonistas & inhibidores , Secuencias Reguladoras de Ácido Ribonucleico , Antígeno Intracelular 1 de las Células T/antagonistas & inhibidores , Antígeno Intracelular 1 de las Células T/genética , Uridina/metabolismo , eIF-2 Quinasa/genética
20.
Nucleic Acids Res ; 52(10): 5880-5894, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38682613

RESUMEN

Dihydrouridine (D) is a common modified base found predominantly in transfer RNA (tRNA). Despite its prevalence, the mechanisms underlying dihydrouridine biosynthesis, particularly in prokaryotes, have remained elusive. Here, we conducted a comprehensive investigation into D biosynthesis in Bacillus subtilis through a combination of genetic, biochemical, and epitranscriptomic approaches. Our findings reveal that B. subtilis relies on two FMN-dependent Dus-like flavoprotein homologs, namely DusB1 and DusB2, to introduce all D residues into its tRNAs. Notably, DusB1 exhibits multisite enzyme activity, enabling D formation at positions 17, 20, 20a and 47, while DusB2 specifically catalyzes D biosynthesis at positions 20 and 20a, showcasing a functional redundancy among modification enzymes. Extensive tRNA-wide D-mapping demonstrates that this functional redundancy impacts the majority of tRNAs, with DusB2 displaying a higher dihydrouridylation efficiency compared to DusB1. Interestingly, we found that BsDusB2 can function like a BsDusB1 when overexpressed in vivo and under increasing enzyme concentration in vitro. Furthermore, we establish the importance of the D modification for B. subtilis growth at suboptimal temperatures. Our study expands the understanding of D modifications in prokaryotes, highlighting the significance of functional redundancy in this process and its impact on bacterial growth and adaptation.


Asunto(s)
Bacillus subtilis , ARN de Transferencia , Uridina , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Uridina/metabolismo , Uridina/análogos & derivados , Expresión Génica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda