Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
1.
Mol Cell ; 73(2): 325-338.e8, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30527664

RESUMEN

The eukaryotic TORC1 kinase is a homeostatic controller of growth that integrates nutritional cues and mediates signals primarily from the surface of lysosomes or vacuoles. Amino acids activate TORC1 via the Rag GTPases that combine into structurally conserved multi-protein complexes such as the EGO complex (EGOC) in yeast. Here we show that Ego1, which mediates membrane-anchoring of EGOC via lipid modifications that it acquires while traveling through the trans-Golgi network, is separately sorted to vacuoles and perivacuolar endosomes. At both surfaces, it assembles EGOCs, which regulate spatially distinct pools of TORC1 that impinge on functionally divergent effectors: vacuolar TORC1 predominantly targets Sch9 to promote protein synthesis, whereas endosomal TORC1 phosphorylates Atg13 and Vps27 to inhibit macroautophagy and ESCRT-driven microautophagy, respectively. Thus, the coordination of three key regulatory nodes in protein synthesis and degradation critically relies on a division of labor between spatially sequestered populations of TORC1.


Asunto(s)
Proteostasis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/enzimología , Endosomas/genética , Regulación Fúngica de la Expresión Génica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Transcripción/genética , Vacuolas/enzimología , Vacuolas/genética
2.
J Biol Chem ; 300(5): 107274, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588809

RESUMEN

The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex forms a 4-helix coiled-coil bundle consisting of 16 layers of interacting side chains upon membrane fusion. The central layer (layer 0) is highly conserved and comprises three glutamines (Q) and one arginine (R), and thus SNAREs are classified into Qa-, Qb-, Qc-, and R-SNAREs. Homotypic vacuolar fusion in Saccharomyces cerevisiae requires the SNAREs Vam3 (Qa), Vti1 (Qb), Vam7 (Qc), and Nyv1 (R). However, the yeast strain lacking NYV1 (nyv1Δ) shows no vacuole fragmentation, whereas the vam3Δ and vam7Δ strains display fragmented vacuoles. Here, we provide genetic evidence that the R-SNAREs Ykt6 and Nyv1 are functionally redundant in vacuole homotypic fusion in vivo using a newly isolated ykt6 mutant. We observed the ykt6-104 mutant showed no defect in vacuole morphology, but the ykt6-104 nyv1Δ double mutant had highly fragmented vacuoles. Furthermore, we show the defect in homotypic vacuole fusion caused by the vam7-Q284R mutation was compensated by the nyv1-R192Q or ykt6-R165Q mutations, which maintained the 3Q:1R ratio in the layer 0 of the SNARE complex, indicating that Nyv1 is exchangeable with Ykt6 in the vacuole SNARE complex. Unexpectedly, we found Ykt6 assembled with exocytic Q-SNAREs when the intrinsic exocytic R-SNAREs Snc1 and its paralog Snc2 lose their ability to assemble into the exocytic SNARE complex. These results suggest that Ykt6 may serve as a backup when other R-SNAREs become dysfunctional and that this flexible assembly of SNARE complexes may help cells maintain the robustness of the vesicular transport network.


Asunto(s)
Proteínas R-SNARE , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacuolas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Vacuolas/genética , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/genética , Fusión de Membrana , Exocitosis , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Mutación
3.
J Cell Sci ; 136(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36546731

RESUMEN

Contractile vacuoles (CVs), enigmatic osmoregulatory organelles, share common characteristics, such as a requirement for RAB11 and high levels of V-ATPase. These commonalities suggest a conserved evolutionary origin for the CVs with implications for understanding of the last common ancestor of eukaryotes and eukaryotic diversification more broadly. A taxonomically broader sampling of CV-associated machinery is required to address this question further. We used a transcriptomics-based approach to identify CV-associated gene products in Dictyostelium discoideum. This approach was first validated by assessing a set of known CV-associated gene products, which were significantly upregulated following hypo-osmotic exposure. Moreover, endosomal and vacuolar gene products were enriched in the upregulated gene set. An upregulated SNARE protein (NPSNB) was predominantly plasma membrane localised and enriched in the vicinity of CVs, supporting the association with this organelle found in the transcriptomic analysis. We therefore confirm that transcriptomic approaches can identify known and novel players in CV function, in our case emphasizing the role of endosomal vesicle fusion machinery in the D. discoideum CV and facilitating future work to address questions regarding the deep evolution of eukaryotic organelles.


Asunto(s)
Dictyostelium , Vacuolas , Vacuolas/genética , Vacuolas/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Endosomas/genética , Endosomas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983843

RESUMEN

In Arabidopsis, vacuolar sorting receptor isoform 1 (VSR1) sorts 12S globulins to the protein storage vacuoles during seed development. Vacuolar sorting is mediated by specific protein-protein interactions between VSR1 and the vacuolar sorting determinant located at the C terminus (ctVSD) on the cargo proteins. Here, we determined the crystal structure of the protease-associated domain of VSR1 (VSR1-PA) in complex with the C-terminal pentapeptide (468RVAAA472) of cruciferin 1, an isoform of 12S globulins. The 468RVA470 motif forms a parallel ß-sheet with the switch III residues (127TMD129) of VSR1-PA, and the 471AA472 motif docks to a cradle formed by the cargo-binding loop (95RGDCYF100), making a hydrophobic interaction with Tyr99. The C-terminal carboxyl group of the ctVSD is recognized by forming salt bridges with Arg95. The C-terminal sequences of cruciferin 1 and vicilin-like storage protein 22 were sufficient to redirect the secretory red fluorescent protein (spRFP) to the vacuoles in Arabidopsis protoplasts. Adding a proline residue to the C terminus of the ctVSD and R95M substitution of VSR1 disrupted receptor-cargo interactions in vitro and led to increased secretion of spRFP in Arabidopsis protoplasts. How VSR1-PA recognizes ctVSDs of other storage proteins was modeled. The last three residues of ctVSD prefer hydrophobic residues because they form a hydrophobic cluster with Tyr99 of VSR1-PA. Due to charge-charge interactions, conserved acidic residues, Asp129 and Glu132, around the cargo-binding site should prefer basic residues over acidic ones in the ctVSD. The structural insights gained may be useful in targeting recombinant proteins to the protein storage vacuoles in seeds.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sustitución de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Mutación Missense , Conformación Proteica en Lámina beta , Dominios Proteicos , Transporte de Proteínas , Protoplastos/química , Protoplastos/metabolismo , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Relación Estructura-Actividad , Vacuolas/química , Vacuolas/genética , Vacuolas/metabolismo
5.
PLoS Genet ; 18(10): e1010431, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36227834

RESUMEN

It is widely stated in the literature that closed mature autophagosomes (APs) fuse with lysosomes/vacuoles during macroautophagy/autophagy. Previously, we showed that unclosed APs accumulated as clusters outside vacuoles in Vps21/Rab5 and ESCRT mutants after a short period of nitrogen starvation. However, the fate of such unclosed APs remains unclear. In this study, we used a combination of cellular and biochemical approaches to show that unclosed double-membrane APs entered vacuoles and formed unclosed single-membrane autophagic bodies after prolonged nitrogen starvation or rapamycin treatment. Vacuolar hydrolases, vacuolar transport chaperon (VTC) proteins, Ypt7, and Vam3 were all involved in the entry of unclosed double-membrane APs into vacuoles in Vps21-mutant cells. Overexpression of the vacuolar hydrolases, Pep4 or Prb1, or depletion of most VTC proteins promoted the entry of unclosed APs into vacuoles in Vps21-mutant cells, whereas depletion of Pep4 and/or Prb1 delayed the entry into vacuoles. In contrast to the complete infertility of diploid cells of typical autophagy mutants, diploid cells of Vps21 mutant progressed through meiosis to sporulation, benefiting from the entry of unclosed APs into vacuoles after prolonged nitrogen starvation. Overall, these data represent a new observation that unclosed double-membrane APs can enter vacuoles after prolonged autophagy induction, most likely as a survival strategy.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Vacuolas , Autofagosomas/metabolismo , Autofagia/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Hidrolasas/metabolismo , Chaperonas Moleculares/metabolismo , Nitrógeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus/metabolismo , Sirolimus/farmacología , Vacuolas/genética , Vacuolas/metabolismo , Proteínas de Unión al GTP rab/metabolismo
6.
PLoS Genet ; 18(10): e1010446, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36215320

RESUMEN

Diverse physiology relies on receptor and transporter protein down-regulation and degradation mediated by ESCRTs. Loss-of-function mutations in human ESCRT genes linked to cancers and neurological disorders are thought to block this process. However, when homologous mutations are introduced into model organisms, cells thrive and degradation persists, suggesting other mechanisms compensate. To better understand this secondary process, we studied degradation of transporter (Mup1) or receptor (Ste3) proteins when ESCRT genes (VPS27, VPS36) are deleted in Saccharomyces cerevisiae using live-cell imaging and organelle biochemistry. We find that endocytosis remains intact, but internalized proteins aberrantly accumulate on vacuolar lysosome membranes within cells. Here they are sorted for degradation by the intralumenal fragment (ILF) pathway, constitutively or when triggered by substrates, misfolding or TOR activation in vivo and in vitro. Thus, the ILF pathway functions as fail-safe layer of defense when ESCRTs disregard their clients, representing a two-tiered system that ensures degradation of surface polytopic proteins.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Humanos , Proteolisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacuolas/genética , Vacuolas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Portadoras/metabolismo
7.
Genes Dev ; 30(24): 2724-2736, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087716

RESUMEN

Ciliated protozoans perform extreme forms of programmed somatic DNA rearrangement during development. The model ciliate Tetrahymena thermophila removes 34% of its germline micronuclear genome from somatic macronuclei by excising thousands of internal eliminated sequences (IESs), a process that shares features with transposon excision. Indeed, piggyBac transposon-derived genes are necessary for genome-wide IES excision in both Tetrahymena (TPB2 [Tetrahymena piggyBac-like 2] and LIA5) and Paramecium tetraurelia (PiggyMac). T. thermophila has at least three other piggyBac-derived genes: TPB1, TPB6, and TPB7 Here, we show that TPB1 and TPB6 excise a small, distinct set of 12 unusual IESs that disrupt exons. TPB1-deficient cells complete mating, but their progeny exhibit slow growth, giant vacuoles, and osmotic shock sensitivity due to retention of an IES in the vacuolar gene DOP1 (Dopey domain-containing protein). Unlike most IESs, TPB1-dependent IESs have piggyBac-like terminal inverted motifs that are necessary for excision. Transposon-like excision mediated by TPB1 and TPB6 provides direct evidence for a transposon origin of not only IES excision machinery but also IESs themselves. Our study highlights a division of labor among ciliate piggyBac-derived genes, which carry out mutually exclusive categories of excision events mediated by either transposon-like features or RNA-directed heterochromatin.


Asunto(s)
Elementos Transponibles de ADN/genética , Reordenamiento Génico/genética , Genes Protozoarios/genética , Genoma de Protozoos/genética , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Estadios del Ciclo de Vida , Proteínas Protozoarias/genética , Tetrahymena thermophila/crecimiento & desarrollo , Vacuolas/genética
8.
Plant Cell ; 32(10): 3206-3223, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32769131

RESUMEN

During their first year of growth, overwintering biennial plants transport Suc through the phloem from photosynthetic source tissues to storage tissues. In their second year, they mobilize carbon from these storage tissues to fuel new growth and reproduction. However, both the mechanisms driving this shift and the link to reproductive growth remain unclear. During vegetative growth, biennial sugar beet (Beta vulgaris) maintains a steep Suc concentration gradient between the shoot (source) and the taproot (sink). To shift from vegetative to generative growth, they require a chilling phase known as vernalization. We studied sugar beet sink-source dynamics upon vernalization and showed that before flowering, the taproot underwent a reversal from a sink to a source of carbohydrates. This transition was induced by transcriptomic and functional reprogramming of sugar beet tissue, resulting in a reversal of flux direction in the phloem. In this transition, the vacuolar Suc importers and exporters TONOPLAST SUGAR TRANSPORTER2;1 and SUCROSE TRANSPORTER4 were oppositely regulated, leading to the mobilization of sugars from taproot storage vacuoles. Concomitant changes in the expression of floral regulator genes suggest that these processes are a prerequisite for bolting. Our data will help both to dissect the metabolic and developmental triggers for bolting and to identify potential targets for genome editing and breeding.


Asunto(s)
Beta vulgaris/fisiología , Floema/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Metabolismo de los Hidratos de Carbono , Dióxido de Carbono/metabolismo , Frío , Esculina/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Floema/genética , Fotosíntesis/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Sacarosa/metabolismo , Azúcares/metabolismo , Vacuolas/genética , Vacuolas/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(41): 25880-25889, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989160

RESUMEN

The plant trans-Golgi network (TGN) is a central trafficking hub where secretory, vacuolar, recycling, and endocytic pathways merge. Among currently known molecular players involved in TGN transport, three different adaptor protein (AP) complexes promote vesicle generation at the TGN with different cargo specificity and destination. Yet, it remains unresolved how sorting into diverging vesicular routes is spatially organized. Here, we study the family of Arabidopsis thaliana Epsin-like proteins, which are accessory proteins to APs facilitating vesicle biogenesis. By comprehensive molecular, cellular, and genetic analysis of the EPSIN gene family, we identify EPSIN1 and MODIFIED TRANSPORT TO THE VACUOLE1 (MTV1) as its only TGN-associated members. Despite their large phylogenetic distance, they perform overlapping functions in vacuolar and secretory transport. By probing their relationship with AP complexes, we find that they define two molecularly independent pathways: While EPSIN1 associates with AP-1, MTV1 interacts with AP-4, whose function is required for MTV1 recruitment. Although both EPSIN1/AP-1 and MTV1/AP-4 pairs reside at the TGN, high-resolution microscopy reveals them as spatially separate entities. Our results strongly support the hypothesis of molecularly, functionally, and spatially distinct subdomains of the plant TGN and suggest that functional redundancy can be achieved through parallelization of molecularly distinct but functionally overlapping pathways.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Red trans-Golgi/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Arabidopsis/clasificación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Unión Proteica , Transporte de Proteínas , Vacuolas/genética , Vacuolas/metabolismo , Red trans-Golgi/genética
10.
PLoS Genet ; 16(10): e1009046, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33064727

RESUMEN

The Ccr4-Not complex functions as an effector of multiple signaling pathways that control gene transcription and mRNA turnover. Consequently, Ccr4-Not contributes to a diverse array of processes, which includes a significant role in cell metabolism. Yet a mechanistic understanding of how it contributes to metabolism is lacking. Herein, we provide evidence that Ccr4-Not activates nutrient signaling through the essential target of rapamycin complex 1 (TORC1) pathway. Ccr4-Not disruption reduces global TORC1 signaling, and it also upregulates expression of the cell wall integrity (CWI) pathway terminal kinase Mpk1. Although CWI signaling represses TORC1 signaling, we find that Ccr4-Not loss inhibits TORC1 independently of CWI activation. Instead, we demonstrate that Ccr4-Not promotes the function of the vacuole V-ATPase, which interacts with the Gtr1 GTPase-containing EGO complex to stimulate TORC1 in response to nutrient sufficiency. Bypassing the V-ATPase requirement in TORC1 activation using a constitutively active Gtr1 mutant fully restores TORC1 signaling in Ccr4-Not deficient cells. Transcriptome analysis and functional studies revealed that loss of the Ccr4 subunit activates the TORC1 repressed retrograde signaling pathway to upregulate mitochondrial activity. Blocking this mitochondrial upregulation in Ccr4-Not deficient cells further represses TORC1 signaling, and it causes synergistic deficiencies in mitochondrial-dependent metabolism. These data support a model whereby Ccr4-Not loss impairs V-ATPase dependent TORC1 activation that forces cells to enhance mitochondrial metabolism to sustain a minimal level of TORC1 signaling necessary for cell growth and proliferation. Therefore, Ccr4-Not plays an integral role in nutrient signaling and cell metabolism by promoting V-ATPase dependent TORC1 activation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , ATPasas de Translocación de Protón Vacuolares/genética , Pared Celular/genética , Endosomas/genética , Regulación Fúngica de la Expresión Génica/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas de Unión al GTP Monoméricas/genética , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Vacuolas/genética
11.
PLoS Genet ; 16(8): e1008966, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32776922

RESUMEN

The vacuole of the yeast Saccharomyces cerevisiae plays an important role in nutrient storage. Arginine, in particular, accumulates in the vacuole of nitrogen-replete cells and is mobilized to the cytosol under nitrogen starvation. The arginine import and export systems involved remain poorly characterized, however. Furthermore, how their activity is coordinated by nitrogen remains unknown. Here we characterize Vsb1 as a novel vacuolar membrane protein of the APC (amino acid-polyamine-organocation) transporter superfamily which, in nitrogen-replete cells, is essential to active uptake and storage of arginine into the vacuole. A shift to nitrogen starvation causes apparent inhibition of Vsb1-dependent activity and mobilization of stored vacuolar arginine to the cytosol. We further show that this arginine export involves Ypq2, a vacuolar protein homologous to the human lysosomal cationic amino acid exporter PQLC2 and whose activity is detected only in nitrogen-starved cells. Our study unravels the main arginine import and export systems of the yeast vacuole and suggests that they are inversely regulated by nitrogen.


Asunto(s)
Arginina/metabolismo , Nitrógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Aminoácidos/genética , Transporte Biológico/genética , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/genética , Vacuolas/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(18): 9884-9895, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32321832

RESUMEN

The factors and mechanisms involved in vacuolar transport in plants, and in particular those directing vesicles to their target endomembrane compartment, remain largely unknown. To identify components of the vacuolar trafficking machinery, we searched for Arabidopsis modified transport to the vacuole (mtv) mutants that abnormally secrete the synthetic vacuolar cargo VAC2. We report here on the identification of 17 mtv mutations, corresponding to mutant alleles of MTV2/VSR4, MTV3/PTEN2A MTV7/EREL1, MTV8/ARFC1, MTV9/PUF2, MTV10/VPS3, MTV11/VPS15, MTV12/GRV2, MTV14/GFS10, MTV15/BET11, MTV16/VPS51, MTV17/VPS54, and MTV18/VSR1 Eight of the MTV proteins localize at the interface between the trans-Golgi network (TGN) and the multivesicular bodies (MVBs), supporting that the trafficking step between these compartments is essential for segregating vacuolar proteins from those destined for secretion. Importantly, the GARP tethering complex subunits MTV16/VPS51 and MTV17/VPS54 were found at endoplasmic reticulum (ER)- and microtubule-associated compartments (EMACs). Moreover, MTV16/VPS51 interacts with the motor domain of kinesins, suggesting that, in addition to tethering vesicles, the GARP complex may regulate the motors that transport them. Our findings unveil a previously uncharacterized compartment of the plant vacuolar trafficking pathway and support a role for microtubules and kinesins in GARP-dependent transport of soluble vacuolar cargo in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Transporte de Proteínas/genética , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/genética , Alelos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Vesículas Citoplasmáticas/genética , Vesículas Citoplasmáticas/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Cuerpos Multivesiculares/genética , Cuerpos Multivesiculares/metabolismo , Mutación , Vacuolas/genética , Proteínas de Transporte Vesicular/metabolismo
13.
J Biol Chem ; 297(4): 101126, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461097

RESUMEN

Transient receptor potential (TRP) cation channels, which are conserved across mammals, flies, fish, sea squirts, worms, and fungi, essentially contribute to cellular Ca2+ signaling. The activity of the unique TRP channel in yeast, TRP yeast channel 1 (TRPY1), relies on the vacuolar and cytoplasmic Ca2+ concentration. However, the mechanism(s) of Ca2+-dependent regulation of TRPY1 and possible contribution(s) of Ca2+-binding proteins are yet not well understood. Our results demonstrate a Ca2+-dependent binding of yeast calmodulin (CaM) to TRPY1. TRPY1 activity was increased in the cmd1-6 yeast strain, carrying a non-Ca2+-binding CaM mutant, compared with the parent strain expressing wt CaM (Cmd1). Expression of Cmd1 in cmd1-6 yeast rescued the wt phenotype. In addition, in human embryonic kidney 293 cells, hypertonic shock-induced TRPY1-dependent Ca2+ influx and Ca2+ release were increased by the CaM antagonist ophiobolin A. We found that coexpression of mammalian CaM impeded the activity of TRPY1 by reinforcing effects of endogenous CaM. Finally, inhibition of TRPY1 by Ca2+-CaM required the cytoplasmic amino acid stretch E33-Y92. In summary, our results show that TRPY1 is under inhibitory control of Ca2+-CaM and that mammalian CaM can replace yeast CaM for this inhibition. These findings add TRPY1 to the innumerable cellular proteins, which include a variety of ion channels, that use CaM as a constitutive or dissociable Ca2+-sensing subunit, and contribute to a better understanding of the modulatory mechanisms of Ca2+-CaM.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Canales Catiónicos TRPC/metabolismo , Vacuolas/metabolismo , Calcio/química , Calmodulina/antagonistas & inhibidores , Calmodulina/química , Calmodulina/genética , Células HEK293 , Humanos , Dominios Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sesterterpenos/farmacología , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/genética , Vacuolas/química , Vacuolas/genética
14.
EMBO J ; 37(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30120144

RESUMEN

Constitutive membrane fusion within eukaryotic cells is thought to be controlled at its initial steps, membrane tethering and SNARE complex assembly, and to rapidly proceed from there to full fusion. Although theory predicts that fusion pore expansion faces a major energy barrier and might hence be a rate-limiting and regulated step, corresponding states with non-expanding pores are difficult to assay and have remained elusive. Here, we show that vacuoles in living yeast are connected by a metastable, non-expanding, nanoscopic fusion pore. This is their default state, from which full fusion is regulated. Molecular dynamics simulations suggest that SNAREs and the SM protein-containing HOPS complex stabilize this pore against re-closure. Expansion of the nanoscopic pore to full fusion can thus be triggered by osmotic pressure gradients, providing a simple mechanism to rapidly adapt organelle volume to increases in its content. Metastable, nanoscopic fusion pores are then not only a transient intermediate but can be a long-lived, physiologically relevant and regulated state of SNARE-dependent membrane fusion.


Asunto(s)
Fusión de Membrana , Simulación de Dinámica Molecular , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacuolas , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/química , Vacuolas/genética , Vacuolas/metabolismo
15.
PLoS Pathog ; 16(8): e1008822, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32866204

RESUMEN

Shigella flexneri invades host cells by entering within a bacteria-containing vacuole (BCV). In order to establish its niche in the host cytosol, the bacterium ruptures its BCV. Contacts between S. flexneri BCV and infection-associated macropinosomes (IAMs) formed in situ have been reported to enhance BCV disintegration. The mechanism underlying S. flexneri vacuolar escape remains however obscure. To decipher the molecular mechanism priming the communication between the IAMs and S. flexneri BCV, we performed mass spectrometry-based analysis of the magnetically purified IAMs from S. flexneri-infected cells. While proteins involved in host recycling and exocytic pathways were significantly enriched at the IAMs, we demonstrate more precisely that the S. flexneri type III effector protein IpgD mediates the recruitment of the exocyst to the IAMs through the Rab8/Rab11 pathway. This recruitment results in IAM clustering around S. flexneri BCV. More importantly, we reveal that IAM clustering subsequently facilitates an IAM-mediated unwrapping of the ruptured vacuole membranes from S. flexneri, enabling the naked bacterium to be ready for intercellular spread via actin-based motility. Taken together, our work untangles the molecular cascade of S. flexneri-driven host trafficking subversion at IAMs to develop its cytosolic lifestyle, a crucial step en route for infection progression at cellular and tissue level.


Asunto(s)
Disentería Bacilar , Shigella flexneri , Transducción de Señal , Vacuolas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Disentería Bacilar/genética , Disentería Bacilar/metabolismo , Células HeLa , Humanos , Shigella flexneri/genética , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidad , Vacuolas/genética , Vacuolas/metabolismo , Vacuolas/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
16.
Plant Cell ; 31(12): 2973-2995, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31615848

RESUMEN

Under nutrient and energy-limiting conditions, plants up-regulate sophisticated catabolic pathways such as autophagy to remobilize nutrients and restore energy homeostasis. Autophagic flux is tightly regulated under these circumstances through the AuTophaGy-related1 (ATG1) kinase complex, which relays upstream nutrient and energy signals to the downstream components that drive autophagy. Here, we investigated the role(s) of the Arabidopsis (Arabidopsis thaliana) ATG1 kinase during autophagy through an analysis of a quadruple mutant deficient in all four ATG1 isoforms. These isoforms appear to act redundantly, including the plant-specific, truncated ATG1t variant, and like other well-characterized atg mutants, homozygous atg1abct quadruple mutants display early leaf senescence and hypersensitivity to nitrogen and fixed-carbon starvations. Although ATG1 kinase is essential for up-regulating autophagy under nitrogen deprivation and short-term carbon starvation, it did not stimulate autophagy under prolonged carbon starvation. Instead, an ATG1-independent response arose requiring phosphatidylinositol-3-phosphate kinase (PI3K) and SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE1 (SnRK1), possibly through phosphorylation of the ATG6 subunit within the PI3K complex by the catalytic KIN10 subunit of SnRK1. Together, our data connect ATG1 kinase to autophagy and reveal that plants engage multiple pathways to activate autophagy during nutrient stress, which include the ATG1 route as well as an alternative route requiring SnRK1 and ATG6 signaling.plantcell;31/12/2973/FX1F1fx1.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Carbono/deficiencia , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Compuestos de Amonio/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Beclina-1/química , Beclina-1/genética , Beclina-1/metabolismo , Carbono/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Nitrógeno/deficiencia , Nitrógeno/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Isoformas de Proteínas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Vacuolas/genética , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
17.
Plant Cell ; 31(10): 2411-2429, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31363038

RESUMEN

The plant endosomal trafficking pathway controls the abundance of membrane-associated soluble proteins, as shown for abscisic acid (ABA) receptors of the PYRABACTIN RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORS (PYR/PYL/RCAR) family. ABA receptor targeting for vacuolar degradation occurs through the late endosome route and depends on FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING1 (FYVE1) and VACUOLAR PROTEIN SORTING23A (VPS23A), components of the ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT-I (ESCRT-I) complexes. FYVE1 and VPS23A interact with ALG-2 INTERACTING PROTEIN-X (ALIX), an ESCRT-III-associated protein, although the functional relevance of such interactions and their consequences in cargo sorting are unknown. In this study we show that Arabidopsis (Arabidopsis thaliana) ALIX directly binds to ABA receptors in late endosomes, promoting their degradation. Impaired ALIX function leads to altered endosomal localization and increased accumulation of ABA receptors. In line with this activity, partial loss-of-function alix-1 mutants display ABA hypersensitivity during growth and stomatal closure, unveiling a role for the ESCRT machinery in the control of water loss through stomata. ABA-hypersensitive responses are suppressed in alix-1 plants impaired in PYR/PYL/RCAR activity, in accordance with ALIX affecting ABA responses primarily by controlling ABA receptor stability. ALIX-1 mutant protein displays reduced interaction with VPS23A and ABA receptors, providing a molecular basis for ABA hypersensitivity in alix-1 mutants. Our findings unveil a negative feedback mechanism triggered by ABA that acts via ALIX to control the accumulation of specific PYR/PYL/RCAR receptors.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Endosomas/metabolismo , Estomas de Plantas/genética , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Estomas de Plantas/química , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Unión Proteica/genética , Transporte de Proteínas/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Vacuolas/genética , Vacuolas/metabolismo , Agua/metabolismo
18.
Mol Cell ; 53(1): 148-61, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24389104

RESUMEN

We have developed a technique, called Ubiquitin Ligase Substrate Trapping, for the isolation of ubiquitinated substrates in complex with their ubiquitin ligase (E3). By fusing a ubiquitin-associated (UBA) domain to an E3 ligase, we were able to selectively purify the polyubiquitinated forms of E3 substrates. Using ligase traps of eight different F box proteins (SCF specificity factors) coupled with mass spectrometry, we identified known, as well as previously unreported, substrates. Polyubiquitinated forms of candidate substrates associated with their cognate F box partner, but not other ligase traps. Interestingly, the four most abundant candidate substrates identified for the F box protein Saf1 were all vacuolar/lysosomal proteins. Analysis of one of these substrates, Prb1, showed that Saf1 selectively promotes ubiquitination of the unprocessed form of the zymogen. This suggests that Saf1 is part of a pathway that targets protein precursors for proteasomal degradation.


Asunto(s)
Proteínas F-Box/metabolismo , Lisosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Vacuolas/metabolismo , Proteínas F-Box/genética , Lisosomas/genética , Espectrometría de Masas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Ubiquitinadas/genética , Ubiquitinación/fisiología , Vacuolas/genética
19.
Proc Natl Acad Sci U S A ; 116(36): 18132-18141, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31431522

RESUMEN

Stomatal movement is essential for plant growth. This process is precisely regulated by various cellular activities in guard cells. F-actin dynamics and vacuole morphology are both involved in stomatal movement. The sorting of cargoes by clathrin adaptor protein (AP) complexes from the Golgi to the vacuole is critical for establishing a normal vacuole morphology. In this study, we demonstrate that the medium subunit of the AP3 complex (AP3M) binds to and severs actin filaments in vitro and that it participates in the sorting of cargoes (such as the sucrose exporter SUC4) to the tonoplast, and thereby regulates stomatal closure in Arabidopsis thaliana Defects in AP3 or SUC4 led to more rapid water loss and delayed stomatal closure, as well as hypersensitivity to drought stress. In ap3m mutants, the F-actin status was altered compared to the wild type, and the sorted cargoes failed to localize to the tonoplast. AP3M contains a previously unidentified F-actin binding domain that is conserved in AP3M homologs in both plants and animals. Mutations in the F-actin binding domain of AP3M abolished its F-actin binding activity in vitro, leading to an aberrant vacuole morphology and reduced levels of SUC4 on the tonoplast in guard cells. Our findings indicate that the F-actin binding activity of AP3M is required for the precise localization of AP3-dependent cargoes to the tonoplast and for the regulation of vacuole morphology in guard cells during stomatal closure.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 3 de Proteína Adaptadora/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estomas de Plantas/metabolismo , Vacuolas/metabolismo , Citoesqueleto de Actina/genética , Complejo 3 de Proteína Adaptadora/genética , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Estomas de Plantas/citología , Estomas de Plantas/genética , Vacuolas/genética
20.
PLoS Genet ; 15(6): e1008219, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31242183

RESUMEN

Fes1 is a conserved armadillo repeat-containing Hsp70 nucleotide exchange factor important for growth at high temperature, proteasomal protein degradation and prion propagation. Depleting or mutating Fes1 induces a stress response and causes defects in these processes that are ascribed solely to disruption of Fes1 regulation of Hsp70. Here, we find Fes1 was essential for degradation of gluconeogenic enzymes by the vacuole import and degradation (Vid) pathway and for cell wall integrity (CWI), which is crucial for growth at high temperature. Unexpectedly, Fes1 mutants defective in physical or functional interaction with Hsp70 retained activities that support Vid and CWI. Fes1 and the Fes1 mutants bound to the Vid substrate Fbp1 in vitro and captured Slt2, a signaling kinase that regulates CWI, from cell lysates. Our data show that the armadillo domain of Fes1 binds proteins other than Hsp70, that Fes1 has important Hsp70-independent roles in the cell, and that major growth defects caused by depleting Fes1 are due to loss of these functions rather than to loss of Hsp70 regulation. We uncovered diverse functions of Fes1 beyond its defined role in regulating Hsp70, which points to possible multi-functionality among its conserved counterparts in other organisms or organelles.


Asunto(s)
Pared Celular/genética , Factores de Intercambio de Guanina Nucleótido/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas de Saccharomyces cerevisiae/genética , Citosol/metabolismo , Gluconeogénesis/genética , Glucosa/genética , Glucosa/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/genética , Vacuolas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda