Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Crit Rev Biochem Mol Biol ; 58(1): 36-49, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098102

RESUMEN

Disulfide bond formation is a catalyzed reaction essential for the folding and stability of proteins in the secretory pathway. In prokaryotes, disulfide bonds are generated by DsbB or VKOR homologs that couple the oxidation of a cysteine pair to quinone reduction. Vertebrate VKOR and VKOR-like enzymes have gained the epoxide reductase activity to support blood coagulation. The core structures of DsbB and VKOR variants share the architecture of a four-transmembrane-helix bundle that supports the coupled redox reaction and a flexible region containing another cysteine pair for electron transfer. Despite considerable similarities, recent high-resolution crystal structures of DsbB and VKOR variants reveal significant differences. DsbB activates the cysteine thiolate by a catalytic triad of polar residues, a reminiscent of classical cysteine/serine proteases. In contrast, bacterial VKOR homologs create a hydrophobic pocket to activate the cysteine thiolate. Vertebrate VKOR and VKOR-like maintain this hydrophobic pocket and further evolved two strong hydrogen bonds to stabilize the reaction intermediates and increase the quinone redox potential. These hydrogen bonds are critical to overcome the higher energy barrier required for epoxide reduction. The electron transfer process of DsbB and VKOR variants uses slow and fast pathways, but their relative contribution may be different in prokaryotic and eukaryotic cells. The quinone is a tightly bound cofactor in DsbB and bacterial VKOR homologs, whereas vertebrate VKOR variants use transient substrate binding to trigger the electron transfer in the slow pathway. Overall, the catalytic mechanisms of DsbB and VKOR variants have fundamental differences.


Asunto(s)
Bacterias , Cisteína , Cisteína/metabolismo , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/metabolismo , Oxidación-Reducción , Bacterias/metabolismo , Quinonas , Disulfuros/química , Disulfuros/metabolismo , Proteínas Bacterianas/metabolismo
2.
J Biol Chem ; 300(6): 107383, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762182

RESUMEN

Disulfide bond formation has a central role in protein folding of both eukaryotes and prokaryotes. In bacteria, disulfide bonds are catalyzed by DsbA and DsbB/VKOR enzymes. First, DsbA, a periplasmic disulfide oxidoreductase, introduces disulfide bonds into substrate proteins. Then, the membrane enzyme, either DsbB or VKOR, regenerate DsbA's activity by the formation of de novo disulfide bonds which reduce quinone. We have previously performed a high-throughput chemical screen and identified a family of warfarin analogs that target either bacterial DsbB or VKOR. In this work, we expressed functional human VKORc1 in Escherichia coli and performed a structure-activity-relationship analysis to study drug selectivity between bacterial and mammalian enzymes. We found that human VKORc1 can function in E. coli by removing two positive residues, allowing the search for novel anticoagulants using bacteria. We also found one warfarin analog capable of inhibiting both bacterial DsbB and VKOR and a second one antagonized only the mammalian enzymes when expressed in E. coli. The difference in the warfarin structure suggests that substituents at positions three and six in the coumarin ring can provide selectivity between the bacterial and mammalian enzymes. Finally, we identified the two amino acid residues responsible for drug binding. One of these is also essential for de novo disulfide bond formation in both DsbB and VKOR enzymes. Our studies highlight a conserved role of this residue in de novo disulfide-generating enzymes and enable the design of novel anticoagulants or antibacterials using coumarin as a scaffold.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Vitamina K Epóxido Reductasas , Warfarina , Warfarina/metabolismo , Warfarina/química , Vitamina K Epóxido Reductasas/metabolismo , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/genética , Humanos , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Disulfuros/química , Disulfuros/metabolismo , Cumarinas/metabolismo , Cumarinas/química , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Anticoagulantes/química , Anticoagulantes/metabolismo , Benzoquinonas/metabolismo , Benzoquinonas/química , Relación Estructura-Actividad , Unión Proteica , Proteínas de la Membrana
3.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673722

RESUMEN

The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme that converts vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents supplied by its redox partner through thiol-disulphide exchange reactions. The functionally related molecular complexes assembled during this process have never been described, except for a proposed de novo model of a 'precursor' complex of hVKORC1 associated with protein disulphide isomerase (PDI). Using numerical approaches (in silico modelling and molecular dynamics simulation), we generated alternative 3D models for each molecular complex bonded either covalently or non-covalently. These models differ in the orientation of the PDI relative to hVKORC1 and in the cysteine residue involved in forming protein-protein disulphide bonds. Based on a comparative analysis of these models' shape, folding, and conformational dynamics, the most probable putative complexes, mimicking the 'precursor', 'intermediate', and 'successor' states, were suggested. In addition, we propose using these complexes to develop the 'allo-network drugs' necessary for treating blood diseases.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Disulfuro Isomerasas , Vitamina K Epóxido Reductasas , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/química , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/metabolismo , Vitamina K Epóxido Reductasas/genética , Humanos , Disulfuros/química , Disulfuros/metabolismo , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo , Modelos Moleculares , Conformación Proteica , Oxidación-Reducción , Unión Proteica
4.
J Biol Chem ; 296: 100145, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33273012

RESUMEN

Vitamin K epoxide reductases (VKORs) constitute a major family of integral membrane thiol oxidoreductases. In humans, VKOR sustains blood coagulation and bone mineralization through the vitamin K cycle. Previous chemical models assumed that the catalysis of human VKOR (hVKOR) starts from a fully reduced active site. This state, however, constitutes only a minor cellular fraction (5.6%). Thus, the mechanism whereby hVKOR catalysis is carried out in the cellular environment remains largely unknown. Here we use quantitative mass spectrometry (MS) and electrophoretic mobility analyses to show that KO likely forms a covalent complex with a cysteine mutant mimicking hVKOR in a partially oxidized state. Trapping of this potential reaction intermediate suggests that the partially oxidized state is catalytically active in cells. To investigate this activity, we analyze the correlation between the cellular activity and the cellular cysteine status of hVKOR. We find that the partially oxidized hVKOR has considerably lower activity than hVKOR with a fully reduced active site. Although there are more partially oxidized hVKOR than fully reduced hVKOR in cells, these two reactive states contribute about equally to the overall hVKOR activity, and hVKOR catalysis can initiate from either of these states. Overall, the combination of MS quantification and biochemical analyses reveals the catalytic mechanism of this integral membrane enzyme in a cellular environment. Furthermore, these results implicate how hVKOR is inhibited by warfarin, one of the most commonly prescribed drugs.


Asunto(s)
Vitamina K 1/análogos & derivados , Vitamina K Epóxido Reductasas/metabolismo , Catálisis , Dominio Catalítico , Células Cultivadas , Humanos , Mutación , Conformación Proteica , Vitamina K 1/química , Vitamina K 1/metabolismo , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/genética
5.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409257

RESUMEN

Human vitamin K epoxide reductase (hVKORC1) enzymatic activity requires an initial activation by a specific redox protein, a less studied step in the hVKORC1 vital cycle. Significant steric conditions must be met by enzymes, being that to adapt their configurations is mandatory for hVKORC1 activation. We studied, by molecular dynamics (MD) simulations, the folding and conformational plasticity of hVKORC1 in its inactive (fully oxidised) state using available structures, crystallographic and from de novo modelling. According to the obtained results, hVKORC1 is a modular protein composed of the stable transmembrane domain (TMD) and intrinsically disordered luminal (L) loop, possessing the great plasticity/adaptability required to perform various steps of the activation process. The docking (HADDOCK) of Protein Disulfide Isomerase (PDI) onto different hVKORC1 conformations clearly indicated that the most interpretable solutions were found on the target closed L-loop form, a prevalent conformation of hVKORC1's oxidised state. We also suggest that the cleaved L-loop is an appropriate entity to study hVKORC1 recognition/activation by its redox protein. Additionally, the application of hVKORC1 (membrane protein) in aqueous solution is likely to prove to be very useful in practice in either in silico studies or in vitro experiments.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Disulfuro Isomerasas , Humanos , Oxidación-Reducción , Proteína Disulfuro Isomerasas/metabolismo , Dominios Proteicos , Vitamina K/metabolismo , Vitamina K Epóxido Reductasas/química
6.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466919

RESUMEN

Redox (reduction-oxidation) reactions control many important biological processes in all organisms, both prokaryotes and eukaryotes. This reaction is usually accomplished by canonical disulphide-based pathways involving a donor enzyme that reduces the oxidised cysteine residues of a target protein, resulting in the cleavage of its disulphide bonds. Focusing on human vitamin K epoxide reductase (hVKORC1) as a target and on four redoxins (protein disulphide isomerase (PDI), endoplasmic reticulum oxidoreductase (ERp18), thioredoxin-related transmembrane protein 1 (Tmx1) and thioredoxin-related transmembrane protein 4 (Tmx4)) as the most probable reducers of VKORC1, a comparative in-silico analysis that concentrates on the similarity and divergence of redoxins in their sequence, secondary and tertiary structure, dynamics, intraprotein interactions and composition of the surface exposed to the target is provided. Similarly, hVKORC1 is analysed in its native state, where two pairs of cysteine residues are covalently linked, forming two disulphide bridges, as a target for Trx-fold proteins. Such analysis is used to derive the putative recognition/binding sites on each isolated protein, and PDI is suggested as the most probable hVKORC1 partner. By probing the alternative orientation of PDI with respect to hVKORC1, the functionally related noncovalent complex formed by hVKORC1 and PDI was found, which is proposed to be a first precursor to probe thiol-disulphide exchange reactions between PDI and hVKORC1.


Asunto(s)
Dominios Proteicos , Pliegue de Proteína , Tiorredoxinas/química , Vitamina K Epóxido Reductasas/química , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Oxidación-Reducción , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Homología de Secuencia de Aminoácido , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo
7.
Angew Chem Int Ed Engl ; 60(16): 8867-8873, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33751812

RESUMEN

A free-radical footprinting approach is described for integral membrane protein (IMP) that extends, significantly, the "fast photochemical oxidation of proteins" (FPOP) platform. This new approach exploits highly hydrophobic perfluoroisopropyl iodide (PFIPI) together with tip sonication to ensure efficient transport into the micelle interior, allowing laser dissociation and footprinting of the transmembrane domains. In contrast to water soluble footprinters, PFIPI footprints both the hydrophobic intramembrane and the hydrophilic extramembrane domains of the IMP vitamin K epoxide reductase (VKOR). The footprinting is fast, giving high coverage for Tyr (100 %) and Trp. The incorporation of the reagent with sonication does not significantly affect VKOR's enzymatic function, and tyrosine iodination does not compromise protease digestion and the subsequent analysis. The locations for the modifications are largely consistent with the corresponding solvent accessibilities, recommending this approach for future membrane protein footprinting.


Asunto(s)
Detergentes/metabolismo , Vitamina K Epóxido Reductasas/metabolismo , Detergentes/química , Radicales Libres/química , Radicales Libres/metabolismo , Micelas , Estructura Molecular , Fotólisis , Sonicación , Vitamina K Epóxido Reductasas/química
8.
Biochemistry ; 59(13): 1351-1360, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32182040

RESUMEN

The vitamin K epoxide reductase (VKORC1) enzyme is of primary importance in many physiological processes, i.e., blood coagulation, energy metabolism, and arterial calcification prevention, due to its role in the vitamin K cycle. Indeed, VKORC1 catalyzes reduction of vitamin K epoxide to quinone and then to hydroquinone. However, the three-dimensional VKORC1 structure remains experimentally undetermined, because of the endoplasmic reticulum membrane location of this enzyme. Here we present a molecular modeling investigation of the VKORC1 enzymatic site structure and function, supported by in vitro enzymatic assays. Four VKORC1 mutants were designed in silico (F55G, F55Y, N80G, and F83G) based on a previous study that identified residues F55, N80, and F83 as being crucial for vitamin K epoxide binding. F55G, N80G, and F83G nonconservative mutants were all predicted to be inactive by molecular modeling analyses. However, the F55Y conservative mutant was expected to be active compared to wild-type VKORC1. In vitro enzymatic assays performed on recombinant proteins assessed our molecular modeling hypotheses and led us to describe the role of accurate VKORC1 active site residues with respect to VKORC1. Residues F55, N80, and F83 appeared to act in a concerted manner to keep vitamin K epoxide close to the C135 catalytic residue. Residues F55 and N80 prevent naphthoquinone head rotation away from the active site, assisted by residue F83 that prevents vitamin K from sliding outside the enzymatic pocket, through hydrophobic tail stabilization. Our results thus highlighted the specific functions of VKORC1 catalytic pocket residues and evidenced the ability of our structural model to predict biological effects of VKORC1 mutations.


Asunto(s)
Vitamina K 1/análogos & derivados , Vitamina K Epóxido Reductasas/química , Secuencias de Aminoácidos , Sitios de Unión , Dominio Catalítico , Humanos , Modelos Moleculares , Vitamina K 1/química , Vitamina K 1/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo
9.
Blood ; 132(6): 647-657, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743176

RESUMEN

Vitamin K epoxide reductase (VKOR), an endoplasmic reticulum membrane protein, is the key enzyme for vitamin K-dependent carboxylation, a posttranslational modification that is essential for the biological functions of coagulation factors. VKOR is the target of the most widely prescribed oral anticoagulant, warfarin. However, the topological structure of VKOR and the mechanism of warfarin's inhibition of VKOR remain elusive. Additionally, it is not clear why warfarin-resistant VKOR mutations identified in patients significantly decrease warfarin's binding affinity, but have only a minor effect on vitamin K binding. Here, we used immunofluorescence confocal imaging of VKOR in live mammalian cells and PEGylation of VKOR's endogenous cytoplasmic-accessible cysteines in intact microsomes to probe the membrane topology of human VKOR. Our results show that the disputed loop sequence between the first and second transmembrane (TM) domain of VKOR is located in the cytoplasm, supporting a 3-TM topological structure of human VKOR. Using molecular dynamics (MD) simulations, a T-shaped stacking interaction between warfarin and tyrosine residue 139, within the proposed TY139A warfarin-binding motif, was observed. Furthermore, a reversible dynamic warfarin-binding pocket opening and conformational changes were observed when warfarin binds to VKOR. Several residues (Y25, A26, and Y139) were found essential for warfarin binding to VKOR by MD simulations, and these were confirmed by the functional study of VKOR and its mutants in their native milieu using a cell-based assay. Our findings provide new insights into the dynamics of the binding of warfarin to VKOR, as well as into warfarin's mechanism of anticoagulation.


Asunto(s)
Vitamina K Epóxido Reductasas/antagonistas & inhibidores , Warfarina/farmacología , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Cisteína/química , Células HEK293 , Humanos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación Missense , Mutación Puntual , Unión Proteica , Conformación Proteica , Tirosina/química , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/deficiencia , Vitamina K Epóxido Reductasas/metabolismo
10.
Int J Mol Sci ; 21(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429051

RESUMEN

Vitamin K (VK) is a key nutrient for several biological processes (e.g., blood clotting and bone metabolism). To fulfill VK nutritional requirements, VK action as an activator of pregnane X receptor (Pxr) signaling pathway, and as a co-factor of γ-glutamyl carboxylase enzyme, should be considered. In this regard, VK recycling through vitamin K epoxide reductases (Vkors) is essential and should be better understood. Here, the expression patterns of vitamin K epoxide reductase complex subunit 1 (vkorc1) and vkorc1 like 1 (vkorc1l1) were determined during the larval ontogeny of Senegalese sole (Solea senegalensis), and in early juveniles cultured under different physiological conditions. Full-length transcripts for ssvkorc1 and ssvkorc1l1 were determined and peptide sequences were found to be evolutionarily conserved. During larval development, expression of ssvkorc1 showed a slight increase during absence or low feed intake. Expression of ssvkorc1l1 continuously decreased until 24 h post-fertilization, and remained constant afterwards. Both ssvkors were ubiquitously expressed in adult tissues, and highest expression was found in liver for ssvkorc1, and ovary and brain for ssvkorc1l1. Expression of ssvkorc1 and ssvkorc1l1 was differentially regulated under physiological conditions related to fasting and re-feeding, but also under VK dietary supplementation and induced deficiency. The present work provides new and basic molecular clues evidencing how VK metabolism in marine fish is sensitive to nutritional and environmental conditions.


Asunto(s)
Peces Planos/crecimiento & desarrollo , Peces Planos/metabolismo , Especificidad de Órganos , Vitamina K Epóxido Reductasas/metabolismo , Vitamina K/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , ADN Complementario/genética , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces Planos/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Filogenia , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/genética
11.
Biochemistry ; 57(3): 258-266, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29064673

RESUMEN

During oxidative protein folding, disulfide bond formation is catalyzed by thiol oxidoreductases. Through dedicated relay pathways, the disulfide is generated in donor enzymes, passed to carrier enzymes, and subsequently delivered to target proteins. The eukaryotic disulfide donors are flavoenzymes, Ero1 in the endoplasmic reticulum and Erv1 in mitochondria. In prokaryotes, disulfide generation is coupled to quinone reduction, catalyzed by intramembrane donor enzymes, DsbB and VKOR. To catalyze de novo disulfide formation, these different disulfide donors show striking structural convergence at several levels. They share a four-helix bundle core structure at their active site, which contains a CXXC motif at a helical end. They have also evolved a flexible loop with shuttle cysteines to transfer electrons to the active site and relay the disulfide bond to the carrier enzymes. Studies of the prokaryotic VKOR, however, have stirred debate about whether the human homologue adopts the same topology with four transmembrane helices and uses the same electron-transfer mechanism. The controversies have recently been resolved by investigating the human VKOR structure and catalytic process in living cells with a mass spectrometry-based approach. Structural convergence between human VKOR and the disulfide donors is found to underlie cofactor reduction, disulfide generation, and electron transfer.


Asunto(s)
Evolución Molecular , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Compuestos de Sulfhidrilo/química , Vitamina K Epóxido Reductasas/química , Catálisis , Secuencia Conservada , Disulfuros/química , Humanos , Isomerismo , Pliegue de Proteína , Estructura Secundaria de Proteína
12.
Biochemistry ; 57(3): 286-294, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29192498

RESUMEN

Mass spectrometry-based footprinting is an emerging approach for studying protein structure. Because integral membrane proteins are difficult targets for conventional structural biology, we recently developed a mass spectrometry (MS) footprinting method to probe membrane protein-drug interactions in live cells. This method can detect structural differences between apo and drug-bound states of membrane proteins, with the changes inferred from MS quantification of the cysteine modification pattern, generated by residue-specific chemical labeling. Here, we describe the experimental design, interpretation, advantages, and limitations of using cysteine footprinting by taking as an example the interaction of warfarin with vitamin K epoxide reductase, a human membrane protein. Compared with other structural methods, footprinting of proteins in live cells produces structural information for the near native state. Knowledge of cellular conformational states is a necessary complement to the high-resolution structures obtained from purified proteins in vitro. Thus, the MS footprinting method is broadly applicable in membrane protein biology. Future directions include probing flexible motions of membrane proteins and their interaction interface in live cells, which are often beyond the reach of conventional structural methods.


Asunto(s)
Cisteína/química , Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Vitamina K Epóxido Reductasas/química , Warfarina/química , Detergentes/química , Células HEK293 , Humanos , Marcaje Isotópico , Ligandos , Conformación Proteica , Solubilidad
13.
Biochem J ; 473(7): 851-8, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26772871

RESUMEN

The membrane topology of vitamin K epoxide reductase (VKOR) is controversial with data supporting both a three transmembrane and a four transmembrane model. The positioning of the transmembrane domains and the loops between these domains is critical if we are to understand the mechanism of vitamin K oxidation and its recycling by members of the thioredoxin family of proteins and the mechanism of action of warfarin, an inhibitor of VKOR. Here we show that both mammalian VKOR isoforms adopt the same topology, with the large loop between transmembrane one and two facing the lumen of the endoplasmic reticulum (ER). We used a redox sensitive green fluorescent protein (GFP) fused to the N- or C-terminus to show that these regions face the cytosol, and introduction of glycosylation sites along with mixed disulfide formation with thioredoxin-like transmembrane protein (TMX) to demonstrate ER localization of the major loop. The topology is identical with the bacterial homologue from Synechococcussp., for which the structure and mechanism of recycling has been characterized. Our results provide a resolution to the membrane topology controversy and support previous results suggesting a role for members of the ER protein disulfide isomerase (PDI) family in recycling VKOR.


Asunto(s)
Proteínas Bacterianas/química , Membrana Celular/química , Synechococcus/química , Vitamina K Epóxido Reductasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo
14.
J Biol Chem ; 290(35): 21393-405, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26170452

RESUMEN

Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the Δvkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria.


Asunto(s)
Actinomyces/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Vitamina K Epóxido Reductasas/metabolismo , Actinomyces/química , Actinomyces/citología , Actinomyces/genética , Actinomicosis/microbiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Cristalografía por Rayos X , Disulfuros/química , Disulfuros/metabolismo , Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Eliminación de Gen , Humanos , Interacciones Microbianas , Modelos Moleculares , Conformación Proteica , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Pliegue de Proteína , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/genética
15.
Pharmacogenet Genomics ; 26(1): 44-50, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26513304

RESUMEN

The variable response to warfarin treatment often has a genetic basis. A protein homology model of human vitamin K epoxide reductase, subunit 1 (VKORC1), was generated to elucidate the mechanism of warfarin resistance observed in a patient with the Val66Met mutation. The VKORC1 homology model comprises four transmembrane (TM) helical domains and a half helical lid domain. Cys132 and Cys135, located in the N-terminal end of TM-4, are linked through a disulfide bond. Two distinct binding sites for warfarin were identified. Site-1, which binds vitamin K epoxide (KO) in a catalytically favorable orientation, shows higher affinity for S-warfarin compared with R-warfarin. Site-2, positioned in the domain occupied by the hydrophobic tail of KO, binds both warfarin enantiomers with similar affinity. Displacement of Arg37 occurs in the Val66Met mutant, blocking access of warfarin (but not KO) to Site-1, consistent with clinical observation of warfarin resistance.


Asunto(s)
Resistencia a Medicamentos , Polimorfismo de Nucleótido Simple , Embolia Pulmonar/tratamiento farmacológico , Embolia Pulmonar/genética , Vitamina K Epóxido Reductasas/genética , Warfarina/administración & dosificación , Adulto , Sitios de Unión , Humanos , Masculino , Modelos Moleculares , Mutación , Estructura Secundaria de Proteína , Homología Estructural de Proteína , Tanzanía , Vitamina K Epóxido Reductasas/química
16.
Crit Rev Biochem Mol Biol ; 48(4): 357-72, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23631591

RESUMEN

Human vitamin K epoxide reductase (hVKOR) is a small integral membrane protein involved in recycling vitamin K. hVKOR produces vitamin K hydroquinone, a crucial cofactor for γ-glutamyl carboxylation of vitamin K dependent proteins, which are necessary for blood coagulation. Because of this, hVKOR is the target of a common anticoagulant, warfarin. Spurred by the identification of the hVKOR gene less than a decade ago, there have been a number of new insights related to this protein. Nonetheless, there are a number of key issues that have not been resolved; such as where warfarin binds hVKOR, or if human VKOR shares the topology of the structurally characterized but distantly related prokaryotic VKOR. The pharmacogenetics and single nucleotide polymorphisms of hVKOR used in personalized medicine strategies for warfarin dosing should be carefully considered to inform the debate. The biochemical and cell biological evidence suggests that hVKOR has a distinct fold from its ancestral protein, though the controversy will likely remain until structural studies of hVKOR are accomplished. Resolving these issues should impact development of new anticoagulants. The paralogous human protein, VKOR-like1 (VKORL1) was recently shown to also participate in vitamin K recycling. VKORL1 was also recently characterized and assigned a functional role as a housekeeping protein involved in redox homeostasis and oxidative stress with a potential role in cancer regulation. As the physiological interplay between these two human paralogs emerge, the impacts could be significant in a number of diverse fields from coagulation to cancer.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/metabolismo , Humanos , Oxigenasas de Función Mixta/química , Vitamina K/metabolismo , Warfarina/metabolismo
17.
Biochemistry ; 54(42): 6454-61, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26435421

RESUMEN

Human vitamin K epoxide reductase (hVKOR) is an integral membrane protein responsible for the maintenance of reduced vitamin K pools, a prerequisite for the action of γ-glutamyl carboxylase and hence for hemostasis. Here we describe the recombinant expression of hVKOR as an insoluble fusion protein in Escherichia coli, followed by purification and chemical cleavage under denaturing conditions. In vitro renaturation and reconstitution of purified solubilized hVKOR in phospholipids could be established to yield active protein. Crucially, the renatured enzyme is inhibited by the powerful coumarin anticoagulant warfarin, and we demonstrate that enzyme activity depends on lipid composition. The completely synthetic system for protein production allows a rational investigation of the multiple variables in membrane protein folding and paves the way for the provision of pure, active membrane protein for structural studies.


Asunto(s)
Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Técnicas In Vitro , Cinética , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Fosfolípidos/química , Fosfolípidos/metabolismo , Pliegue de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Vitamina K Epóxido Reductasas/genética , Warfarina/farmacología
18.
J Biol Chem ; 289(13): 9396-407, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24532791

RESUMEN

Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1's active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1's overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1's active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions.


Asunto(s)
Dominio Catalítico , Secuencia Conservada , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Disulfuros/química , Células HEK293 , Humanos , Datos de Secuencia Molecular , Oxidación-Reducción , Relación Estructura-Actividad , Vitamina K/análogos & derivados , Vitamina K/metabolismo
19.
Blood ; 122(15): 2743-50, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23982176

RESUMEN

Since the discovery of warfarin-sensitive vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), 26 human VKORC1 (hVKORC1) missense mutations have been associated with oral anticoagulant resistance (OACR). Assessment of warfarin resistance using the "classical" dithiothreitol-driven vitamin K 2,3-epoxide reductase (VKOR) assay has not reflected clinical resistance phenotypes for most mutations. Here, we present half maximal inhibitory concentrations (IC50) results for 21 further hVKORC1 mutations obtained using a recently validated cell-based assay (J Thromb Haemost 11(5):872). In contrast to results from the dithiothreitol-driven VKOR assay, all mutations exhibited basal VKOR activity and warfarin IC50 values that correspond well to patient OACR phenotypes. Thus, the present assay is useful for functional investigations of VKORC1 and oral anticoagulant inhibition of the vitamin K cycle. Additionally, we modeled hVKORC1 on the previously solved structure of a homologous bacterial enzyme and performed in silico docking of warfarin on this model. We identified one binding site delineated by 3 putative binding interfaces. These interfaces comprise linear sequences of the endoplasmic reticulum-lumenal loop (Ser52-Phe55) and the first (Leu22-Lys30) and fourth (Phe131-Thr137) transmembrane helices. All known OACR-associated hVKORC1 mutations are located in or around these putative interfaces, supporting our model.


Asunto(s)
4-Hidroxicumarinas/farmacología , Resistencia a Medicamentos/genética , Modelos Químicos , Vitamina K Epóxido Reductasas/genética , Warfarina/farmacología , Anticoagulantes/farmacología , Sitios de Unión/genética , Células HEK293 , Humanos , Concentración 50 Inhibidora , Mutación Missense , Unión Proteica/genética , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/metabolismo
20.
J Biol Chem ; 288(44): 31556-66, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23918929

RESUMEN

The vitamin K oxidoreductase (VKORC1) recycles vitamin K to support the activation of vitamin K-dependent (VKD) proteins, which have diverse functions that include hemostasis and calcification. VKD proteins are activated by Glu carboxylation, which depends upon the oxygenation of vitamin K hydroquinone (KH2). The vitamin K epoxide (KO) product is recycled by two reactions, i.e. KO reduction to vitamin K quinone (K) and then to KH2, and recent studies have called into question whether VKORC1 reduces K to KH2. Analysis in insect cells lacking endogenous carboxylation components showed that r-VKORC1 reduces KO to efficiently drive carboxylation, indicating KH2 production. Direct detection of the vitamin K reaction products is confounded by KH2 oxidation, and we therefore developed a new assay that stabilized KH2 and allowed quantitation. Purified VKORC1 analyzed in this assay showed efficient KO to KH2 reduction. Studies in 293 cells expressing tagged r-VKORC1 revealed that VKORC1 is a multimer, most likely a dimer. A monomer can only perform one reaction, and a dimer is therefore interesting in explaining how VKORC1 accomplishes both reactions. An inactive mutant (VKORC1(C132A/C135A)) was dominant negative in heterodimers with wild type VKORC1, resulting in decreased KO reduction in cells and carboxylation in vitro. The results are significant regarding human VKORC1 mutations, as warfarin-resistant patients have mutant and wild type VKORC1 alleles. A VKORC1 dimer indicates a mixed population of homodimers and heterodimers that may have different functional properties, and VKORC1 reduction may therefore be more complex in these patients than appreciated previously.


Asunto(s)
Hidroquinonas/metabolismo , Multimerización de Proteína/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Vitamina K Epóxido Reductasas/metabolismo , Vitamina K/metabolismo , Sustitución de Aminoácidos , Anticoagulantes/uso terapéutico , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/fisiología , Células HEK293 , Humanos , Hidroquinonas/química , Mutación Missense , Oxidación-Reducción , Vitamina K/química , Vitamina K/genética , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/genética , Warfarina/uso terapéutico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda