Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Cell ; 186(26): 5784-5797.e17, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38101408

RESUMEN

Cannabis activates the cannabinoid receptor 1 (CB1), which elicits analgesic and emotion regulation benefits, along with adverse effects, via Gi and ß-arrestin signaling pathways. However, the lack of understanding of the mechanism of ß-arrestin-1 (ßarr1) coupling and signaling bias has hindered drug development targeting CB1. Here, we present the high-resolution cryo-electron microscopy structure of CB1-ßarr1 complex bound to the synthetic cannabinoid MDMB-Fubinaca (FUB), revealing notable differences in the transducer pocket and ligand-binding site compared with the Gi protein complex. ßarr1 occupies a wider transducer pocket promoting substantial outward movement of the TM6 and distinctive twin toggle switch rearrangements, whereas FUB adopts a different pose, inserting more deeply than the Gi-coupled state, suggesting the allosteric correlation between the orthosteric binding pocket and the partner protein site. Taken together, our findings unravel the molecular mechanism of signaling bias toward CB1, facilitating the development of CB1 agonists.


Asunto(s)
Arrestina , Receptor Cannabinoide CB1 , Transducción de Señal , Arrestina/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo , Microscopía por Crioelectrón , Receptor Cannabinoide CB1/metabolismo , Humanos , Animales , Línea Celular
2.
Cell ; 185(10): 1661-1675.e16, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35483373

RESUMEN

ß-arrestins bind G protein-coupled receptors to terminate G protein signaling and to facilitate other downstream signaling pathways. Using single-molecule fluorescence resonance energy transfer imaging, we show that ß-arrestin is strongly autoinhibited in its basal state. Its engagement with a phosphopeptide mimicking phosphorylated receptor tail efficiently releases the ß-arrestin tail from its N domain to assume distinct conformations. Unexpectedly, we find that ß-arrestin binding to phosphorylated receptor, with a phosphorylation barcode identical to the isolated phosphopeptide, is highly inefficient and that agonist-promoted receptor activation is required for ß-arrestin activation, consistent with the release of a sequestered receptor C tail. These findings, together with focused cellular investigations, reveal that agonism and receptor C-tail release are specific determinants of the rate and efficiency of ß-arrestin activation by phosphorylated receptor. We infer that receptor phosphorylation patterns, in combination with receptor agonism, synergistically establish the strength and specificity with which diverse, downstream ß-arrestin-mediated events are directed.


Asunto(s)
Fosfopéptidos , Receptores Acoplados a Proteínas G , Fosfopéptidos/metabolismo , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
3.
Cell ; 185(24): 4560-4573.e19, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36368322

RESUMEN

Binding of arrestin to phosphorylated G protein-coupled receptors (GPCRs) is crucial for modulating signaling. Once internalized, some GPCRs remain complexed with ß-arrestins, while others interact only transiently; this difference affects GPCR signaling and recycling. Cell-based and in vitro biophysical assays reveal the role of membrane phosphoinositides (PIPs) in ß-arrestin recruitment and GPCR-ß-arrestin complex dynamics. We find that GPCRs broadly stratify into two groups, one that requires PIP binding for ß-arrestin recruitment and one that does not. Plasma membrane PIPs potentiate an active conformation of ß-arrestin and stabilize GPCR-ß-arrestin complexes by promoting a fully engaged state of the complex. As allosteric modulators of GPCR-ß-arrestin complex dynamics, membrane PIPs allow for additional conformational diversity beyond that imposed by GPCR phosphorylation alone. For GPCRs that require membrane PIP binding for ß-arrestin recruitment, this provides a mechanism for ß-arrestin release upon translocation of the GPCR to endosomes, allowing for its rapid recycling.


Asunto(s)
Arrestinas , Fosfatidilinositoles , beta-Arrestinas/metabolismo , Fosfatidilinositoles/metabolismo , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
Cell ; 180(6): 1041-1043, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32169216

RESUMEN

ß-arrestins (ßarrs) play multifaceted roles in the signaling and regulation of G-protein-coupled receptors (GPCRs) including their desensitization and endocytosis. Recently determined cryo-EM structures of two different GPCRs in complex with ßarr1 provide the first glimpse of GPCR-ßarr engagement and a structural framework to understand their interaction.


Asunto(s)
Receptores Acoplados a Proteínas G/ultraestructura , beta-Arrestinas/metabolismo , beta-Arrestinas/ultraestructura , Arrestinas/metabolismo , Endocitosis/fisiología , Proteínas de Unión al GTP/metabolismo , Humanos , Fosforilación , Unión Proteica , Isoformas de Proteínas/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Relación Estructura-Actividad , beta-Arrestina 1/metabolismo , Arrestina beta 2/metabolismo
5.
Cell ; 176(1-2): 318-333.e19, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30503206

RESUMEN

Preeclampsia is the most frequent pregnancy-related complication worldwide with no cure. While a number of molecular features have emerged, the underlying causal mechanisms behind the disorder remain obscure. Here, we find that increased complex formation between angiotensin II AT1 and bradykinin B2, two G protein-coupled receptors with opposing effects on blood vessel constriction, triggers symptoms of preeclampsia in pregnant mice. Aberrant heteromerization of AT1-B2 led to exaggerated calcium signaling and high vascular smooth muscle mechanosensitivity, which could explain the onset of preeclampsia symptoms at late-stage pregnancy as mechanical forces increase with fetal mass. AT1-B2 receptor aggregation was inhibited by beta-arrestin-mediated downregulation. Importantly, symptoms of preeclampsia were prevented by transgenic ARRB1 expression or a small-molecule drug. Because AT1-B2 heteromerization was found to occur in human placental biopsies from pregnancies complicated by preeclampsia, specifically targeting AT1-B2 heteromerization and its downstream consequences represents a promising therapeutic approach.


Asunto(s)
Angiotensina II/metabolismo , Receptor de Bradiquinina B2/metabolismo , beta-Arrestina 1/metabolismo , Animales , Señalización del Calcio , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Oligopéptidos , Placenta/metabolismo , Preeclampsia/prevención & control , Embarazo , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 1/fisiología , beta-Arrestina 1/genética , beta-Arrestina 1/fisiología
6.
Nature ; 629(8011): 474-480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600384

RESUMEN

The µ-opioid receptor (µOR) is an important target for pain management1 and molecular understanding of drug action on µOR will facilitate the development of better therapeutics. Here we show, using double electron-electron resonance and single-molecule fluorescence resonance energy transfer, how ligand-specific conformational changes of µOR translate into a broad range of intrinsic efficacies at the transducer level. We identify several conformations of the cytoplasmic face of the receptor that interconvert on different timescales, including a pre-activated conformation that is capable of G-protein binding, and a fully activated conformation that markedly reduces GDP affinity within the ternary complex. Interaction of ß-arrestin-1 with the µOR core binding site appears less specific and occurs with much lower affinity than binding of Gi.


Asunto(s)
Ligandos , Conformación Proteica , Receptores Opioides mu , Humanos , beta-Arrestina 1/química , beta-Arrestina 1/metabolismo , Sitios de Unión , Transferencia Resonante de Energía de Fluorescencia , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Modelos Moleculares , Unión Proteica , Receptores Opioides mu/metabolismo , Receptores Opioides mu/química , Imagen Individual de Molécula
7.
Nature ; 620(7975): 904-910, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558880

RESUMEN

Arrestins have pivotal roles in regulating G protein-coupled receptor (GPCR) signalling by desensitizing G protein activation and mediating receptor internalization1,2. It has been proposed that the arrestin binds to the receptor in two different conformations, 'tail' and 'core', which were suggested to govern distinct processes of receptor signalling and trafficking3,4. However, little structural information is available for the tail engagement of the arrestins. Here we report two structures of the glucagon receptor (GCGR) bound to ß-arrestin 1 (ßarr1) in glucagon-bound and ligand-free states. These structures reveal a receptor tail-engaged binding mode of ßarr1 with many unique features, to our knowledge, not previously observed. Helix VIII, instead of the receptor core, has a major role in accommodating ßarr1 by forming extensive interactions with the central crest of ßarr1. The tail-binding pose is further defined by a close proximity between the ßarr1 C-edge and the receptor helical bundle, and stabilized by a phosphoinositide derivative that bridges ßarr1 with helices I and VIII of GCGR. Lacking any contact with the arrestin, the receptor core is in an inactive state and loosely binds to glucagon. Further functional studies suggest that the tail conformation of GCGR-ßarr governs ßarr recruitment at the plasma membrane and endocytosis of GCGR, and provides a molecular basis for the receptor forming a super-complex simultaneously with G protein and ßarr to promote sustained signalling within endosomes. These findings extend our knowledge about the arrestin-mediated modulation of GPCR functionalities.


Asunto(s)
Receptores de Glucagón , beta-Arrestina 1 , beta-Arrestina 1/química , beta-Arrestina 1/metabolismo , Membrana Celular/metabolismo , Endocitosis , Endosomas/metabolismo , Glucagón/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Ligandos , Fosfatidilinositoles/metabolismo , Receptores de Glucagón/química , Receptores de Glucagón/metabolismo , Unión Proteica
8.
Nature ; 579(7798): 303-308, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31945771

RESUMEN

Arrestin proteins bind to active, phosphorylated G-protein-coupled receptors (GPCRs), thereby preventing G-protein coupling, triggering receptor internalization and affecting various downstream signalling pathways1,2. Although there is a wealth of structural information detailing the interactions between GPCRs and G proteins, less is known about how arrestins engage GPCRs. Here we report a cryo-electron microscopy structure of full-length human neurotensin receptor 1 (NTSR1) in complex with truncated human ß-arrestin 1 (ßarr1(ΔCT)). We find that phosphorylation of NTSR1 is critical for the formation of a stable complex with ßarr1(ΔCT), and identify phosphorylated sites in both the third intracellular loop and the C terminus that may promote this interaction. In addition, we observe a phosphatidylinositol-4,5-bisphosphate molecule forming a bridge between the membrane side of NTSR1 transmembrane segments 1 and 4 and the C-lobe of arrestin. Compared with a structure of a rhodopsin-arrestin-1 complex, in our structure arrestin is rotated by approximately 85° relative to the receptor. These findings highlight both conserved aspects and plasticity among arrestin-receptor interactions.


Asunto(s)
Modelos Moleculares , Receptores de Neurotensina/química , beta-Arrestina 1/química , Microscopía por Crioelectrón , Humanos , Fosforilación , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Receptores de Neurotensina/metabolismo , beta-Arrestina 1/metabolismo
9.
Nature ; 583(7818): 862-866, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32555462

RESUMEN

The ß1-adrenoceptor (ß1AR) is a G-protein-coupled receptor (GPCR) that couples1 to the heterotrimeric G protein Gs. G-protein-mediated signalling is terminated by phosphorylation of the C terminus of the receptor by GPCR kinases (GRKs) and by coupling of ß-arrestin 1 (ßarr1, also known as arrestin 2), which displaces Gs and induces signalling through the MAP kinase pathway2. The ability of synthetic agonists to induce signalling preferentially through either G proteins or arrestins-known as biased agonism3-is important in drug development, because the therapeutic effect may arise from only one signalling cascade, whereas the other pathway may mediate undesirable side effects4. To understand the molecular basis for arrestin coupling, here we determined the cryo-electron microscopy structure of the ß1AR-ßarr1 complex in lipid nanodiscs bound to the biased agonist formoterol5, and the crystal structure of formoterol-bound ß1AR coupled to the G-protein-mimetic nanobody6 Nb80. ßarr1 couples to ß1AR in a manner distinct to that7 of Gs coupling to ß2AR-the finger loop of ßarr1 occupies a narrower cleft on the intracellular surface, and is closer to transmembrane helix H7 of the receptor when compared with the C-terminal α5 helix of Gs. The conformation of the finger loop in ßarr1 is different from that adopted by the finger loop of visual arrestin when it couples to rhodopsin8. ß1AR coupled to ßarr1 shows considerable differences in structure compared with ß1AR coupled to Nb80, including an inward movement of extracellular loop 3 and the cytoplasmic ends of H5 and H6. We observe weakened interactions between formoterol and two serine residues in H5 at the orthosteric binding site of ß1AR, and find that formoterol has a lower affinity for the ß1AR-ßarr1 complex than for the ß1AR-Gs complex. The structural differences between these complexes of ß1AR provide a foundation for the design of small molecules that could bias signalling in the ß-adrenoceptors.


Asunto(s)
Microscopía por Crioelectrón , Fumarato de Formoterol/química , Fumarato de Formoterol/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/ultraestructura , beta-Arrestina 1/química , beta-Arrestina 1/ultraestructura , Secuencia de Aminoácidos , Animales , Sitios de Unión , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/ultraestructura , Células HEK293 , Humanos , Modelos Moleculares , Complejos Multiproteicos , Receptores Adrenérgicos beta 1/metabolismo , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/metabolismo , Anticuerpos de Cadena Única/ultraestructura , Pez Cebra , beta-Arrestina 1/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(28): e2301934120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399373

RESUMEN

E3 ubiquitin ligase Mdm2 facilitates ß-arrestin ubiquitination, leading to the internalization of G protein-coupled receptors (GPCRs). In this process, ß-arrestins bind to Mdm2 and recruit it to the receptor; however, the molecular architecture of the ß-arrestin-Mdm2 complex has not been elucidated yet. Here, we identified the ß-arrestin-binding region (ABR) on Mdm2 and solved the crystal structure of ß-arrestin1 in complex with Mdm2ABR peptide. The acidic residues of Mdm2ABR bind to the positively charged concave side of the ß-arrestin1 N-domain. The C-tail of ß-arrestin1 is still bound to the N-domain, indicating that Mdm2 binds to the inactive state of ß-arrestin1, whereas the phosphorylated C-terminal tail of GPCRs binds to activate ß-arrestins. The overlapped binding site of Mdm2 and GPCR C-tails on ß-arrestin1 suggests that the binding of GPCR C-tails might trigger the release of Mdm2. Moreover, hydrogen/deuterium exchange experiments further show that Mdm2ABR binding to ß-arrestin1 induces the interdomain interface to be more dynamic and uncouples the IP6-induced oligomer of ß-arrestin1. These results show how the E3 ligase, Mdm2, interacts with ß-arrestins to promote the internalization of GPCRs.


Asunto(s)
Arrestinas , Ubiquitina-Proteína Ligasas , beta-Arrestinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , Ubiquitinación , Receptores Acoplados a Proteínas G/metabolismo , Arrestina beta 2/metabolismo , Fosforilación
11.
Proc Natl Acad Sci U S A ; 120(43): e2303794120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844230

RESUMEN

ß-arrestins are multivalent adaptor proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) to inhibit G protein signaling, mediate receptor internalization, and initiate alternative signaling events. ß-arrestins link agonist-stimulated GPCRs to downstream signaling partners, such as the c-Raf-MEK1-ERK1/2 cascade leading to ERK1/2 activation. ß-arrestins have been thought to transduce signals solely via passive scaffolding by facilitating the assembly of multiprotein signaling complexes. Recently, however, ß-arrestin 1 and 2 were shown to activate two downstream signaling effectors, c-Src and c-Raf, allosterically. Over the last two decades, ERK1/2 have been the most intensely studied signaling proteins scaffolded by ß-arrestins. Here, we demonstrate that ß-arrestins play an active role in allosterically modulating ERK kinase activity in vitro and within intact cells. Specifically, we show that ß-arrestins and their GPCR-mediated active states allosterically enhance ERK2 autophosphorylation and phosphorylation of a downstream ERK2 substrate, and we elucidate the mechanism by which ß-arrestins do so. Furthermore, we find that allosteric stimulation of dually phosphorylated ERK2 by active-state ß-arrestin 2 is more robust than by active-state ß-arrestin 1, highlighting differential capacities of ß-arrestin isoforms to regulate effector signaling pathways downstream of GPCRs. In summary, our study provides strong evidence for a new paradigm in which ß-arrestins function as active "catalytic" scaffolds to allosterically unlock the enzymatic activity of signaling components downstream of GPCR activation.


Asunto(s)
Arrestinas , Transducción de Señal , beta-Arrestinas/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestinas/metabolismo , Regulación Alostérica , Transducción de Señal/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Fosforilación , Arrestina beta 2/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(31): e2302668120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490535

RESUMEN

Catecholamine-stimulated ß2-adrenergic receptor (ß2AR) signaling via the canonical Gs-adenylyl cyclase-cAMP-PKA pathway regulates numerous physiological functions, including the therapeutic effects of exogenous ß-agonists in the treatment of airway disease. ß2AR signaling is tightly regulated by GRKs and ß-arrestins, which together promote ß2AR desensitization and internalization as well as downstream signaling, often antithetical to the canonical pathway. Thus, the ability to bias ß2AR signaling toward the Gs pathway while avoiding ß-arrestin-mediated effects may provide a strategy to improve the functional consequences of ß2AR activation. Since attempts to develop Gs-biased agonists and allosteric modulators for the ß2AR have been largely unsuccessful, here we screened small molecule libraries for allosteric modulators that selectively inhibit ß-arrestin recruitment to the receptor. This screen identified several compounds that met this profile, and, of these, a difluorophenyl quinazoline (DFPQ) derivative was found to be a selective negative allosteric modulator of ß-arrestin recruitment to the ß2AR while having no effect on ß2AR coupling to Gs. DFPQ effectively inhibits agonist-promoted phosphorylation and internalization of the ß2AR and protects against the functional desensitization of ß-agonist mediated regulation in cell and tissue models. The effects of DFPQ were also specific to the ß2AR with minimal effects on the ß1AR. Modeling, mutagenesis, and medicinal chemistry studies support DFPQ derivatives binding to an intracellular membrane-facing region of the ß2AR, including residues within transmembrane domains 3 and 4 and intracellular loop 2. DFPQ thus represents a class of biased allosteric modulators that targets an allosteric site of the ß2AR.


Asunto(s)
Arrestina , Transducción de Señal , beta-Arrestinas/metabolismo , Arrestina/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
13.
Pharmacol Rev ; 75(5): 854-884, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37028945

RESUMEN

The two ß-arrestins, ß-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both ß-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how ß-arrestins bind to activated GPCRs and downstream effector proteins. Studies with ß-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by ß-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on ß-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of ß-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific ß-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two ß-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with ß-arrestin mutant mice and cultured cells, complemented by novel insights into ß-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific ß-arrestin functions.


Asunto(s)
Arrestinas , Transducción de Señal , Ratones , Animales , beta-Arrestinas/metabolismo , Arrestinas/química , Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo
14.
Annu Rev Physiol ; 84: 17-40, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34705480

RESUMEN

ß-Arrestin-1 and -2 (also known as arrestin-2 and -3, respectively) are ubiquitously expressed cytoplasmic proteins that dampen signaling through G protein-coupled receptors. However, ß-arrestins can also act as signaling molecules in their own right. To investigate the potential metabolic roles of the two ß-arrestins in modulating glucose and energy homeostasis, recent studies analyzed mutant mice that lacked or overexpressed ß-arrestin-1 and/or -2 in distinct, metabolically important cell types. Metabolic analysis of these mutant mice clearly demonstrated that both ß-arrestins play key roles in regulating the function of most of these cell types, resulting in striking changes in whole-body glucose and/or energy homeostasis. These studies also revealed that ß-arrestin-1 and -2, though structurally closely related, clearly differ in their metabolic roles under physiological and pathophysiological conditions. These new findings should guide the development of novel drugs for the treatment of various metabolic disorders, including type 2 diabetes and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Animales , Glucosa/metabolismo , Homeostasis , Humanos , Ratones , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
15.
J Biol Chem ; 300(1): 105549, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072064

RESUMEN

G protein-coupled receptors (GPCRs) are leading druggable targets for several medicines, but many GPCRs are still untapped for their therapeutic potential due to poor understanding of specific signaling properties. The complement C3a receptor 1 (C3aR1) has been extensively studied for its physiological role in C3a-mediated anaphylaxis/inflammation, and in TLQP-21-mediated lipolysis, but direct evidence for the functional relevance of the C3a and TLQP-21 ligands and signal transduction mechanisms are still limited. In addition, C3aR1 G protein coupling specificity is still unclear, and whether endogenous ligands, or drug-like compounds, show ligand-mediated biased agonism is unknown. Here, we demonstrate that C3aR1 couples preferentially to Gi/o/z proteins and can recruit ß-arrestins to cause internalization. Furthermore, we showed that in comparison to C3a63-77, TLQP-21 exhibits a preference toward Gi/o-mediated signaling compared to ß-arrestin recruitment and internalization. We also show that the purported antagonist SB290157 is a very potent C3aR1 agonist, where antagonism of ligand-stimulated C3aR1 calcium flux is caused by potent ß-arrestin-mediated internalization. Finally, ligand-mediated signaling bias impacted cell function as demonstrated by the regulation of calcium influx, lipolysis in adipocytes, phagocytosis in microglia, and degranulation in mast cells. Overall, we characterize C3aR1 as a Gi/o/z-coupled receptor and demonstrate the functional relevance of ligand-mediated signaling bias in key cellular models. Due to C3aR1 and its endogenous ligands being implicated in inflammatory and metabolic diseases, these results are of relevance toward future C3aR1 drug discovery.


Asunto(s)
Calcio , Complemento C3a , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo , Calcio/metabolismo , Complemento C3a/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Animales , Ratones , Línea Celular
16.
Proc Natl Acad Sci U S A ; 119(21): e2118847119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35594393

RESUMEN

G protein­coupled receptors (GPCRs) are involved in regulation of manifold physiological processes through coupling to heterotrimeric G proteins upon ligand stimulation. Classical therapeutically active drugs simultaneously initiate several downstream signaling pathways, whereas biased ligands, which stabilize subsets of receptor conformations, elicit more selective signaling. This concept of functional selectivity of a ligand has emerged as an interesting property for the development of new therapeutic molecules. Biased ligands are expected to have superior efficacy and/or reduced side effects by regulating biological functions of GPCRs in a more precise way. In the last decade, 5-HT7 receptor (5-HT7R) has become a promising target for the treatment of neuropsychiatric disorders, sleep and circadian rhythm disorders, and pathological pain. In this study, we showed that Serodolin is unique among a number of agonists and antagonists tested: it behaves as an antagonist/inverse agonist on Gs signaling while inducing ERK activation through a ß-arrestin­dependent signaling mechanism that requires c-SRC activation. Moreover, we showed that Serodolin clearly decreases hyperalgesia and pain sensation in response to inflammatory, thermal, and mechanical stimulation. This antinociceptive effect could not be observed in 5-HT7R knockout (KO) mice and was fully blocked by administration of SB269-970, a specific 5-HT7R antagonist, demonstrating the specificity of action of Serodolin. Physiological effects of 5-HT7R stimulation have been classically shown to result from Gs-dependent adenylyl cyclase activation. In this study, using a ß-arrestin­biased agonist, we provided insight into the molecular mechanism triggered by 5-HT7R and revealed its therapeutic potential in the modulation of pain response.


Asunto(s)
Arrestina , Dolor , Serotonina , Arrestina/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Ligandos , Dolor/tratamiento farmacológico , Dolor/fisiopatología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(29): e2117054119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858343

RESUMEN

The G protein-coupled bile acid receptor (GPBAR) is the membrane receptor for bile acids and a driving force of the liver-bile acid-microbiota-organ axis to regulate metabolism and other pathophysiological processes. Although GPBAR is an important therapeutic target for a spectrum of metabolic and neurodegenerative diseases, its activation has also been found to be linked to carcinogenesis, leading to potential side effects. Here, via functional screening, we found that two specific GPBAR agonists, R399 and INT-777, demonstrated strikingly different regulatory effects on the growth and apoptosis of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. Further mechanistic investigation showed that R399-induced GPBAR activation displayed an obvious bias for ß-arrestin 1 signaling, thus promoting YAP signaling activation to stimulate cell proliferation. Conversely, INT-777 preferentially activated GPBAR-Gs signaling, thus inactivating YAP to inhibit cell proliferation and induce apoptosis. Phosphorylation of GPBAR by GRK2 at S310/S321/S323/S324 sites contributed to R399-induced GPBAR-ß-arrestin 1 association. The cryoelectron microscopy (cryo-EM) structure of the R399-bound GPBAR-Gs complex enabled us to identify key interaction residues and pivotal conformational changes in GPBAR responsible for the arrestin signaling bias and cancer cell proliferation. In summary, we demonstrate that different agonists can regulate distinct functions of cell growth and apoptosis through biased GPBAR signaling and control of YAP activity in a NSCLC cell model. The delineated mechanism and structural basis may facilitate the rational design of GPBAR-targeting drugs with both metabolic and anticancer benefits.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proteínas de Ciclo Celular , Neoplasias Pulmonares , Receptores Acoplados a Proteínas G , Factores de Transcripción , Ácidos y Sales Biliares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas de Ciclo Celular/metabolismo , Ácidos Cólicos/farmacología , Microscopía por Crioelectrón , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Factores de Transcripción/metabolismo , beta-Arrestina 1/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(40): e2123231119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161910

RESUMEN

ß-Arrestin 1 (ARRB1) has been recognized as a multifunctional adaptor protein in the last decade, beyond its original role in desensitizing G protein-coupled receptor signaling. Here, we identify that ARRB1 plays essential roles in mediating gastric cancer (GC) cell metabolism and proliferation, by combining cohort analysis and functional investigation using patient-derived preclinical models. Overexpression of ARRB1 was associated with poor outcome of GC patients and knockdown of ARRB1 impaired cell proliferation both ex vivo and in vivo. Intriguingly, ARRB1 depicted diverse subcellular localizations during a passage of organoid cultures (7 d) to exert dual functions. Further analysis revealed that nuclear ARRB1 binds with transcription factor E2F1 triggering up-regulation of proliferative genes, while cytoplasmic ARRB1 modulates metabolic flux by binding with the pyruvate kinase M2 isoform (PKM2) and hindering PKM2 tetramerization, which reduces pyruvate kinase activity and leads to cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis. As ARRB1 localization was shown mostly in the cytoplasm in human GC samples, therapeutic potential of the ARRB1-PKM2 axis was tested, and we found tumor proliferation could be attenuated by the PKM2 activator DASA-58, especially in ARRB1high organoids. Together, the data in our study highlight a spatiotemporally dependent role of ARRB1 in mediating GC cell metabolism and proliferation and implies reactivating PKM2 may be a promising therapeutic strategy in a subset of GC patients.


Asunto(s)
Piruvato Quinasa , Neoplasias Gástricas , beta-Arrestina 1 , Línea Celular Tumoral , Proliferación Celular/fisiología , Factor de Transcripción E2F1/metabolismo , Glucólisis/fisiología , Humanos , Isoformas de Proteínas/genética , Piruvato Quinasa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
19.
J Physiol ; 602(2): 317-332, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38152023

RESUMEN

It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that ß-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in ß-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the ß-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of ß-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by ß-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced ß-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting ß-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of ß-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of ß-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the ß-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of ß-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting ß-arrestin-1 in the RVLM.


Asunto(s)
Hipertensión , MicroARNs , Animales , Ratas , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Presión Sanguínea/fisiología , Luciferasas/metabolismo , Bulbo Raquídeo/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY
20.
J Biol Chem ; 299(12): 105474, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981209

RESUMEN

G protein-coupled receptor (GPCR) signaling and trafficking are regulated by multiple mechanisms, including posttranslational modifications such as ubiquitination by E3 ubiquitin ligases. E3 ligases have been linked to agonist-stimulated ubiquitination of GPCRs via simultaneous binding to ßarrestins. In addition, ßarrestins have been suggested to assist E3 ligases for ubiquitination of key effector molecules, yet mechanistic insight is lacking. Here, we developed an in vitro reconstituted system and show that ßarrestin1 (ßarr1) serves as an adaptor between the effector protein signal-transducing adaptor molecule 1 (STAM1) and the E3 ligase atrophin-interacting protein 4. Via mass spectrometry, we identified seven lysine residues within STAM1 that are ubiquitinated and several types of ubiquitin linkages. We provide evidence that ßarr1 facilitates the formation of linear polyubiquitin chains at lysine residue 136 on STAM1. This lysine residue is important for stabilizing the ßarr1:STAM1 interaction in cells following GPCR activation. Our study identifies atrophin-interacting protein 4 as only the second E3 ligase known to conjugate linear polyubiquitin chains and a possible role for linear ubiquitin chains in GPCR signaling and trafficking.


Asunto(s)
Poliubiquitina , Ubiquitina-Proteína Ligasas , beta-Arrestina 1 , Lisina/metabolismo , Poliubiquitina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , beta-Arrestina 1/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda