Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Cell Sci ; 126(Pt 21): 5074-85, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24006257

RESUMEN

Rgnef (also known as p190RhoGEF or ARHGEF28) is a Rho guanine-nucleotide-exchange factor (GEF) that binds focal adhesion kinase (FAK). FAK is recruited to adhesions and activated by integrin receptors binding to matrix proteins, such as fibronectin (FN). Canonical models place Rgnef downstream of integrin-FAK signaling in regulating Rho GTPase activity and cell movement. Herein, we establish a new, upstream role for Rgnef in enhancing FAK localization to early peripheral adhesions and promoting FAK activation upon FN binding. Rgnef-null mouse embryo fibroblasts (MEFs) exhibit defects in adhesion formation, levels of FAK phosphotyrosine (pY)-397 and FAK localization to peripheral adhesions upon re-plating on FN. Rgnef re-expression rescues these defects, but requires Rgnef-FAK binding. A mutation in the Rgnef pleckstrin homology (PH) domain inhibits adhesion formation, FAK localization, and FAK-Y397 and paxillin-Y118 phosphorylation without disrupting the Rgnef-FAK interaction. A GEF-inactive Rgnef mutant rescues FAK-Y397 phosphorylation and early adhesion localization, but not paxillin-Y118 phosphorylation. This suggests that, downstream of FN binding, paxillin-pY118 requires Rgnef GEF activity through a mechanism distinct from adhesion formation and FAK activation. These results support a scaffolding role for Rgnef in FAK localization and activation at early adhesions in a PH-domain-dependent but GEF-activity-independent manner.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Integrina beta1/metabolismo , ras-GRF1/metabolismo , Secuencia de Aminoácidos , Animales , Adhesión Celular , Células Cultivadas , Activación Enzimática , Fibroblastos/citología , Fibroblastos/enzimología , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/química , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Integrina beta1/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Paxillin/genética , Paxillin/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Transducción de Señal , ras-GRF1/química , ras-GRF1/genética
2.
Structure ; 17(1): 41-53, 2009 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-19141281

RESUMEN

The Ras-specific nucleotide exchange factor Son of sevenless (Sos) is inactive without Ras bound to a distal allosteric site. In contrast, the catalytic domain of Ras guanine nucleotide releasing factor 1 (RasGRF1) is active intrinsically. By substituting residues from RasGRF1 into Sos, we have generated mutants of Sos with basal activity, partially relieved of their dependence on allosteric activation. We have performed molecular dynamics simulations showing how Ras binding to the allosteric site leads to a bias toward the active conformation of Sos. The trajectories show that Sos fluctuates between active and inactive conformations in the absence of Ras and that the activating mutations favor conformations of Sos that are more permissive to Ras binding at the catalytic site. In contrast, unliganded RasGRF1 fluctuates primarily among active conformations. Our results support the premise that the catalytic domain of Sos has evolved an allosteric activation mechanism that extends beyond the simple process of membrane recruitment.


Asunto(s)
Proteínas Son Of Sevenless/metabolismo , ras-GRF1/metabolismo , Animales , Dominio Catalítico , Humanos , Ratones , Mutación , Conformación Proteica , Proteínas Son Of Sevenless/química , Proteínas Son Of Sevenless/genética , ras-GRF1/química
3.
Mol Cell Biol ; 24(4): 1516-30, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14749369

RESUMEN

Recent findings indicate that in addition to its location in the peripheral plasma membrane, H-Ras is found in endomembranes like the endoplasmic reticulum and the Golgi complex. In these locations H-Ras is functional and can efficiently engage downstream effectors, but little is known about how its activation is regulated in these environments. Here we show that the RasGRF family exchange factors, both endogenous and ectopically expressed, are present in the endoplasmic reticulum but not in the Golgi complex. With the aid of H-Ras constructs specifically tethered to the plasma membrane, endoplasmic reticulum, and Golgi complex, we demonstrate that RasGRF1 and RasGRF2 can activate plasma membrane and reticular, but not Golgi-associated, H-Ras. We also show that RasGRF DH domain is required for the activation of H-Ras in the endoplasmic reticulum but not in the plasma membrane. Furthermore, we demonstrate that RasGRF mediation favors the activation of reticular H-Ras by lysophosphatidic acid treatment whereas plasma membrane H-Ras is made more responsive to stimulation by ionomycin. Overall, our results provide the initial insights into the regulation of H-Ras activation in the endoplasmic reticulum.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Intercambio de Guanina Nucleótido ras/metabolismo , ras-GRF1/metabolismo , Animales , Células COS , Membrana Celular/enzimología , Membrana Celular/metabolismo , Ganglios Espinales , Aparato de Golgi/metabolismo , Células HeLa , Hipocampo , Humanos , Masculino , Neuronas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , ras-GRF1/química
4.
Mol Biol Cell ; 12(12): 3919-32, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11739790

RESUMEN

The kinesin superfamily of microtubule motor proteins is important in many cellular processes, including mitosis and meiosis, vesicle transport, and the establishment and maintenance of cell polarity. We have characterized two related kinesins in fission yeast, klp5+ and klp6+,, that are amino-terminal motors of the KIP3 subfamily. Analysis of null mutants demonstrates that neither klp5+ nor klp6+, individually or together, is essential for vegetative growth, although these mutants have altered microtubule behavior. klp5Delta and klp6Delta are resistant to high concentrations of the microtubule poison thiabendazole and have abnormally long cytoplasmic microtubules that can curl around the ends of the cell. This phenotype is greatly enhanced in the cell cycle mutant cdc25-22, leading to a bent, asymmetric cell morphology as cells elongate during cell cycle arrest. Klp5p-GFP and Klp6p-GFP both localize to cytoplasmic microtubules throughout the cell cycle and to spindles in mitosis, but their localizations are not interdependent. During the meiotic phase of the life cycle, both of these kinesins are essential. Spore viability is low in homozygous crosses of either null mutant. Heterozygous crosses of klp5Delta with klp6Delta have an intermediate viability, suggesting cooperation between these proteins in meiosis.


Asunto(s)
Cinesinas/metabolismo , Meiosis , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , Tamaño de la Célula , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Intrones/genética , Cinesinas/química , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Familia de Multigenes , Mutación/genética , Unión Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo , Factores de Tiempo , ras-GRF1/química , ras-GRF1/genética , ras-GRF1/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-12102558

RESUMEN

GTPases of the Ras subfamily regulate a diverse array of cellular-signaling pathways, coupling extracellular signals to the intracellular response machinery. Guanine nucleotide exchange factors (GEFs) are primarily responsible for linking cell-surface receptors to Ras protein activation. They do this by catalyzing the dissociation of GDP from the inactive Ras proteins. GTP can then bind and induce a conformational change that permits interaction with downstream effectors. Over the past 5 years, approximately 20 novel Ras-family GEFs have been identified and characterized. These data indicate that a variety of different signaling mechanisms can be induced to activate Ras, enabling tyrosine kinases, G-protein-coupled receptors, adhesion molecules, second messengers, and various protein-interaction modules to relocate and/or activate GEFs and elevate intracellular Ras-GTP levels. This review discusses the structure and function of the catalytic or CDC25 homology domain common to almost all Ras-family GEFs. It also details our current knowledge about the regulation and function of this rapidly growing family of enzymes that include Sos1 and 2, GRF1 and 2, CalDAG-GEF/GRP1-4, C3G, cAMP-GEF/Epac 1 and 2, PDZ-GEFs, MR-GEF, RalGDS family members, RalGPS, BCAR3, Smg GDS, and phospholipase C(epsilon).


Asunto(s)
Factores de Intercambio de Guanina Nucleótido ras/metabolismo , Proteínas ras/metabolismo , Secuencia de Aminoácidos , Animales , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Neoplasias/etiología , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Proteínas Activadoras de ras GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido ras/química , Factores de Intercambio de Guanina Nucleótido ras/genética , ras-GRF1/química , ras-GRF1/genética , ras-GRF1/metabolismo
6.
Sci Rep ; 6: 36768, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27824130

RESUMEN

The unconventional myosin MYO18A that contains a PDZ domain is required for muscle integrity during zebrafish development. However, the mechanism by which it functions in myofibers is not clear. The presence of a PDZ domain suggests that MYO18A may interact with other partners to perform muscle-specific functions. Here we performed double-hybrid screening and co-immunoprecipitation to identify MYO18A-interacting proteins, and have identified p190RhoGEF and Golgin45 as novel partners for the MYO18A PDZ domain. We have also identified Lurap1, which was previously shown to bind MYO18A. Functional analyses indicate that, similarly as myo18a, knockdown of lurap1, p190RhoGEF and Golgin45 by morpholino oligonucleotides disrupts dystrophin localization at the sarcolemma and produces muscle lesions. Simultaneous knockdown of myo18a with either of these genes severely disrupts myofiber integrity and dystrophin localization, suggesting that they may function similarly to maintain myofiber integrity. We further show that MYO18A and its interaction partners are required for adhesion of myoblasts to extracellular matrix, and for the formation of the Golgi apparatus and organization of F-actin bundles in myoblast cells. These findings suggest that MYO18A has the potential to form a multiprotein complex that links the Golgi apparatus to F-actin, which regulates muscle integrity and function during early development.


Asunto(s)
Músculos/fisiología , Mioblastos/citología , Miosinas/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Adhesión Celular , Pollos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Miosinas/química , Oligonucleótidos/genética , Unión Proteica , Dominios Proteicos , Proteínas Supresoras de Tumor/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/metabolismo , Pez Cebra , ras-GRF1/química
7.
FEBS Lett ; 579(30): 6851-8, 2005 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-16325815

RESUMEN

Cdc25Mm is a mammalian Ras-specific guanine nucleotide exchange factor (GEF). By homology modeling we show that it shares with Sos-GEF the structure of the putative catalytic HI hairpin where the dominant negative T1184E mutation is located. Similarly to Cdc25MmT1184E, the isolated wild-type and mutant hairpins retain the ability to displace Ras-bound nucleotide, originate a stable Ras/GEF complex and downregulate the Ras pathway in vivo. These results indicate that nucleotide re-entry and Ras/GEF dissociation--final steps in the GEF catalytic cycle--require GEF regions different from the HI hairpin. GEF down-sizing could lead to development of novel Ras inhibitors.


Asunto(s)
Guanosina Difosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , ras-GRF1/química , ras-GRF1/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Tampones (Química) , Catálisis , Dominio Catalítico , Línea Celular Transformada , Transformación Celular Neoplásica/genética , Cristalografía por Rayos X , Regulación hacia Abajo , Escherichia coli/genética , Fibroblastos/metabolismo , Genes Dominantes , Genes Reporteros , Genes ras , Ácido Glutámico/metabolismo , Guanosina Difosfato/metabolismo , Homocigoto , Luciferasas/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Células 3T3 NIH , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Temperatura , ortoaminobenzoatos/metabolismo , ras-GRF1/metabolismo
8.
Genetics ; 154(4): 1473-84, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10747046

RESUMEN

The Saccharomyces cerevisiae CDC25 gene encodes a guanine nucleotide exchange factor (GEF) for Ras proteins. Its catalytic domain is highly homologous to Ras-GEFs from all eukaryotes. Even though Cdc25 is the first Ras-GEF identified in any organism, we still know very little about how its function is regulated in yeast. In this work we provide evidence for the involvement of the N terminus of Cdc25 in the regulation of its activity. A truncated CDC25 lacking the noncatalytic C-terminal coding sequence was identified in a screen of high-copy suppressors of the heat-shock-sensitive phenotype of strains in which the Ras pathway is hyper-activated. The truncated gene acts as a dominant-negative mutant because it only suppresses the heat-shock sensitivity of strains that require the function of CDC25. Our two-hybrid assays and immunoprecipitation analyses show interactions between the N terminus of Cdc25 and itself, the C terminus, and the full-length protein. These results suggest that the dominant-negative effect may be a result of oligomerization with endogenous Cdc25. Further evidence of the role of the N terminus of Cdc25 in the regulation of its activity is provided by the mapping of the activating mutation of CDC25HS20 to the serine residue at position 365 in the noncatalytic N-terminal domain. This mutation induces a phenotype similar to activating mutants of other genes in the Ras pathway in yeast. Hence, the N terminus may exert a negative control on the catalytic activity of the protein. Taken together these results suggest that the N terminus plays a crucial role in regulating Cdc25 and consequently Ras activity, which in S. cerevisiae is essential for cell cycle progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , ras-GRF1/metabolismo , Secuencia de Bases , Catálisis , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cartilla de ADN , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Mutación , Fenotipo , ras-GRF1/química , ras-GRF1/genética
9.
Mol Immunol ; 38(16-18): 1283-8, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12217396

RESUMEN

We recently cloned a new mast cell (MC) restricted, Ras guanine nucleotide releasing protein (designated mRasGRP4) from IL-3-developed, mouse bone marrow-derived MCs that can activate varied members of the Ras superfamily of small GTP-binding proteins. We now describe the rat ortholog of this MC-specific guanine exchange factor. Using the mRasGRP4 gene and transcript in a homology-based cloning approach, the relevant transcript was isolated and sequenced from the spleen and lungs of Sprague-Dawley rats. Evidence for differential splicing of the rRasGRP4 transcript was obtained in the spleen. The rat basophilic leukemia 1 MC line was found to express rRasGRP4, as well as the MC-committed progenitors residing in the bone marrow and the mature MCs residing in varied tissues of Sprague-Dawley rats. Based on its deduced amino acid sequence, rRasGRP4 is 93% identical to mRasGRP4. rRasGRP4 contains all of the functional domains present in the RasGRP family of guanine nucleotide exchange factors. Like its mouse ortholog, rRasGRP4 is a MC-restricted guanine exchange factor that contains Ca(2+) and phorbol ester/diacylglycerol-binding domains C-terminal of its CDC25-like catalytic domain.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Mastocitos/metabolismo , ras-GRF1/genética , ras-GRF1/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Datos de Secuencia Molecular , Ratas , Homología de Secuencia de Aminoácido , Distribución Tisular , ras-GRF1/química
10.
FEBS Lett ; 585(24): 3914-20, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22036786

RESUMEN

In Saccharomyces cerevisiae the Cdc25/Ras/cAMP pathway is involved in cell growth and proliferation regulation. Ras proteins are regulated by Ira1/2 GTPase activating proteins (GAPs) and Cdc25/Sdc25 guanine nucleotide exchange factors (GEFs). Most of cytosolic Cdc25 protein was found on internal membranes in exponentially growing cells, while upon incubation in a buffer with no nutrients it is re-localized to plasma membrane. The overexpression of Tpk1 PKA catalytic subunit also induces Cdc25 export from the nucleus, involving two serine residues near the Nuclear Localization Site (NLS): mutation of Ser(825) and Ser(826) to glutamate is sufficient to exclude physiologically expressed Cdc25 from the nucleus, mimicking Tpk1 overproduction effect. Mutation of these Ser residues to Ala abolishes the effect of nuclear export induced by Tpk1 overexpression on a Cdc25eGFP fusion. Moreover, mutation of these residues affects PKA-related phenotypes such as heat shock resistance, glycogen content and cell volume.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ras-GRF1/metabolismo , Transporte Activo de Núcleo Celular , Dominio Catalítico , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Regulación Fúngica de la Expresión Génica , Fosforilación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , ras-GRF1/química , ras-GRF1/genética
11.
Proc Natl Acad Sci U S A ; 103(45): 16692-7, 2006 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-17075039

RESUMEN

The Ras-specific guanine nucleotide-exchange factors Son of sevenless (Sos) and Ras guanine nucleotide-releasing factor 1 (RasGRF1) transduce extracellular stimuli into Ras activation by catalyzing the exchange of Ras-bound GDP for GTP. A truncated form of RasGRF1 containing only the core catalytic Cdc25 domain is sufficient for stimulating Ras nucleotide exchange, whereas the isolated Cdc25 domain of Sos is inactive. At a site distal to the catalytic site, nucleotide-bound Ras binds to Sos, making contacts with the Cdc25 domain and with a Ras exchanger motif (Rem) domain. This allosteric Ras binding stimulates nucleotide exchange by Sos, but the mechanism by which this stimulation occurs has not been defined. We present a crystal structure of the Rem and Cdc25 domains of Sos determined at 2.0-A resolution in the absence of Ras. Differences between this structure and that of Sos bound to two Ras molecules show that allosteric activation of Sos by Ras occurs through a rotation of the Rem domain that is coupled to a rotation of a helical hairpin at the Sos catalytic site. This motion relieves steric occlusion of the catalytic site, allowing substrate Ras binding and nucleotide exchange. A structure of the isolated RasGRF1 Cdc25 domain determined at 2.2-A resolution, combined with computational analyses, suggests that the Cdc25 domain of RasGRF1 is able to maintain an active conformation in isolation because the helical hairpin has strengthened interactions with the Cdc25 domain core. These results indicate that RasGRF1 lacks the allosteric activation switch that is crucial for Sos activity.


Asunto(s)
Proteína SOS1/química , Proteína SOS1/metabolismo , ras-GRF1/química , ras-GRF1/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , Humanos , Técnicas In Vitro , Ratones , Modelos Moleculares , Complejos Multiproteicos , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
12.
J Biol Chem ; 281(11): 7578-82, 2006 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-16407208

RESUMEN

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors (AMPARs) are ligand-gated sodium channels. Through their ability to mediate the majority of rapid excitatory transmission in the central nervous system, these neurotransmitter receptors have been shown to influence synaptic plasticity. Some of these receptors are also calcium-permeable (CP), and they also have been implicated in regulating synaptic plasticity, particularly in interneurons where their concentration is highest. However, the biochemical pathways emanating from CP-AMPARs that mediate these effects have not been well characterized. In this paper, we show that CP-AMPARs are the predominant AMPAR class responsible for activating the Ras/Erk kinase signaling cascade and the cAMP-response element-binding protein (CREB) transcription factor in the cortex of mature mice. Activation of Ras and Erk, but not CREB, occurs through the calcium/calmodulin regulated Ras-GRF1 and Ras-GRF2 exchange factors, which form AMPA-induced complexes with CP-AMPARs but not calcium-impermeable (CI) AMPARs in vivo. Furthermore, we show that CP-AMPARs are also the major AMPAR type to activate Ras/Erk signaling in pubescent mice; however, at this developmental stage Ras-GRF (guanine nucleotide-releasing factor) proteins are not involved. Finally, in neonatal animals CI-AMPARs, but not CP-AMPARs, are the predominant AMPAR type that activates Ras-Erk signaling and CREB in cortical neurons. This occurs indirectly through activation of L-type voltage-dependent calcium channels, an event that is also Ras-GRF-independent. Thus, Ras/Erk signaling and CREB activity induced by AMPARs occur through age-dependent mechanisms that likely make unique developmentally dependent contributions to synaptic function.


Asunto(s)
Calcio/metabolismo , Receptores AMPA/química , ras-GRF1/química , Animales , Encéfalo/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , GTP Fosfohidrolasas/química , Regulación del Desarrollo de la Expresión Génica , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Guanosina Trifosfato/química , Ligandos , Ratones , Modelos Biológicos , Neuronas/metabolismo , Transducción de Señal , Factores de Tiempo , Proteínas ras/química , ras-GRF1/metabolismo
13.
Microbiology (Reading) ; 152(Pt 4): 1231-1242, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16549685

RESUMEN

In the yeast Saccharomyces cerevisiae, the Cdc25/Ras/cAMP/protein kinase A (PKA) pathway plays a major role in the control of metabolism, stress resistance and proliferation, in relation to the available nutrients and conditions. The budding yeast RasGEF Cdc25 was the first RasGEF to be identified in any organism, but very little is known about its activity regulation. Recently, it was suggested that the dispensable N-terminal domain of Cdc25 could negatively control the catalytic activity of the protein. In order to investigate the role of this domain, strains were constructed that produced two different versions of the C-terminal domain of Cdc25 (aa 907-1589 and 1147-1589). The carbon-source-dependent cell size control mechanism present in the wild type was found in the first of these mutants, but was lost in the second mutant, for which the cell size, determined as protein content, was the same during exponential growth in both ethanol- and glucose-containing media. A biparametric analysis demonstrated that this effect was essentially due to the inability of the mutant producing the shorter sequence to modify its protein content at budding. A similar phenotype was observed in strains that lacked CDC25, but which possessed a mammalian GEF catalytic domain. Taken together, these results suggest that Cdc25 is involved in the regulation of cell size in the presence of different carbon sources. Moreover, production of the aa 876-1100 fragment increased heat-stress resistance in the wild-type strain, and rescued heat-shock sensitivity in the ira1Delta background. Further work will aim to clarify the role of this region in Cdc25 activity and Ras/cAMP pathway regulation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Saccharomyces cerevisiae/fisiología , ras-GRF1/genética , ras-GRF1/fisiología , Adaptación Fisiológica , Proteínas de Ciclo Celular/química , Medios de Cultivo/química , Etanol/metabolismo , Proteínas Fúngicas/química , Genes Fúngicos , Glucosa/metabolismo , Calor , Morfogénesis/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Eliminación de Secuencia , ras-GRF1/química
14.
Nat Rev Mol Cell Biol ; 6(2): 167-80, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15688002

RESUMEN

Guanine nucleotide-exchange factors (GEFs) are directly responsible for the activation of Rho-family GTPases in response to diverse extracellular stimuli, and ultimately regulate numerous cellular responses such as proliferation, differentiation and movement. With 69 distinct homologues, Dbl-related GEFs represent the largest family of direct activators of Rho GTPases in humans, and they activate Rho GTPases within particular spatio-temporal contexts. The failure to do so can have significant consequences and is reflected in the aberrant function of Dbl-family GEFs in some human diseases.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Proteínas de Unión al GTP rho/química , Sitio Alostérico , Animales , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Ratones , Modelos Biológicos , Modelos Moleculares , Neuronas/metabolismo , Filogenia , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , ras-GRF1/química
15.
Biochemistry ; 44(7): 2566-76, 2005 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-15709769

RESUMEN

Ras GTPases function as binary switches in the signaling pathways controlling cell growth and differentiation by cycling between the inactive GDP-bound and the active GTP-bound states. They are activated through interaction with guanine nucleotide exchange factors (GEFs) that catalyze the exchange of bound GDP with cytosolic GTP. In a conventional scheme, the biochemical roles of GEFs are postulated as stimulating the release of the bound GDP and stabilizing a nucleotide-free transition state of Ras. Herein we have examined in detail the catalyzed GDP/GTP exchange reaction mechanism by a Ras specific GEF, GRF1. In the absence of free nucleotide, GRF1 could not efficiently stimulate GDP dissociation from Ras. The release of the Ras-bound GDP was dependent upon the concentration and the structure of the incoming nucleotide, in particular, the hydrophobicity of the beta and gamma phosphate groups, suggesting that the GTP binding step is a prerequisite for GDP dissociation, is the rate-limiting step in the GEF reaction, or both. Using a pair of fluorescent guanine nucleotides (N-methylanthraniloyl GDP and 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)-GTP) as donor and acceptor probes, we were able to detect fluorescence resonance energy transfer between the incoming GTP and the departing GDP on Ras under controlled kinetic conditions, providing evidence that there may exist a novel intermediate of the GEF-Ras complex that transiently binds to two nucleotides simultaneously. Furthermore, we found that Ras was capable of binding pyrophosphate (PPi) with a dissociation constant of 26 microM and that PPi and GMP, but neither alone, synergistically potentiated the GRF1-stimulated GDP dissociation from Ras. These results strongly support a GEF reaction mechanism by which nucleotide exchange occurs on Ras through a direct GTP/GDP displacement model.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Modelos Biológicos , Factores de Intercambio de Guanina Nucleótido ras/metabolismo , Proteínas ras/metabolismo , ras-GRF1/metabolismo , Sitios de Unión , Catálisis , Difosfatos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , GTP Fosfohidrolasas/química , Nucleótidos de Guanina/metabolismo , Guanosina Difosfato/química , Guanosina Trifosfato/química , Unión Proteica , ortoaminobenzoatos/metabolismo , Factores de Intercambio de Guanina Nucleótido ras/química , Proteínas ras/química , ras-GRF1/química
16.
Biochemistry ; 42(42): 12154-62, 2003 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-14567676

RESUMEN

Ras proteins are small G proteins playing a major role in eukaryotic signal transduction. Guanine nucleotide exchange factors (GEF) stimulate GDP/GTP exchange, resulting in the formation of the active Ras-GTP complex. In mammalian cells, two major Ras-specific GEF exist: Sos-like and Cdc25-like. To date, structural data are available only for Cdc25(Mm). We designed and synthesized Cdc25(Mm)-derived peptides spanning residues corresponding to the hSos1 HI helical hairpin that has been implicated in the GEF catalytic mechanism. NMR experiments on a chemically synthesized Cdc25(Mm)(1178-1222) peptide proved that helix I readily reaches a conformation very similar to the corresponding helix in hSos1, while residues corresponding to helix H in hSos1 show higher conformational flexibility. Molecular dynamics studies with the appropriate solvent model showed that different conformational spaces are available for the peptide. Since helix H is making several contacts with Ras and a Cdc25(Mm)(1178-1222) peptide is able to bind nucleotide-free Ras in a BIAcore assay, the peptide must be able to obtain the proper Ras-interacting conformation, at least transiently. These results indicate that rational design and improvement of the Ras-interacting peptides should take into account conformational and flexibility features to obtain molecules with the appropriate biochemical properties.


Asunto(s)
Péptidos/química , ras-GRF1/química , Secuencia de Aminoácidos , Catálisis , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido , ras-GRF1/metabolismo
17.
Eur J Biochem ; 268(11): 3275-83, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11389730

RESUMEN

It is known that the human Ras GTPase activating protein (GAP) p120-GAP can be phosphorylated by different members of the Src kinase family and recently phosphorylation of the GDP/GTP exchange factor (GEF) CDC25Mm/GRF1 by proteins of the Src kinase family has been revealed in vivo [Kiyono, M., Kaziro, Y. & Satoh, T. (2000) J. Biol. Chem. 275, 5441-5446]. As it still remains unclear how these phosphorylations can influence the Ras pathway we have analyzed the ability of p60c-Src and Lck to phosphorylate these two Ras regulators and have compared the activity of the phosphorylated and unphosphorylated forms. Both kinases were found to phosphorylate full-length or truncated forms of GAP and GEF. The use of the catalytic domain of p60c-Src showed that its SH3/SH2 domains are not required for the interaction and the phosphorylation of both regulators. Remarkably, the phosphorylations by the two kinases were accompanied by different functional effects. The phosphorylation of p120-GAP by p60c-Src inhibited its ability to stimulate the Ha-Ras-GTPase activity, whereas phosphorylation by Lck did not display any effect. A different picture became evident with CDC25Mm; phosphorylation by Lck increased its capacity to stimulate the GDP/GTP exchange on Ha-Ras, whereas its phosphorylation by p60c-Src was ineffective. Our results suggest that phosphorylation by p60c-Src and Lck is a selective process that can modulate the activity of p120-GAP and CDC25Mm towards Ras proteins.


Asunto(s)
Proteínas Tirosina Quinasas/química , Proteína Activadora de GTPasa p120/química , Proteínas ras/química , ras-GRF1/química , Proteína Tirosina Quinasa CSK , Humanos , Fosforilación , Familia-src Quinasas
18.
J Biol Chem ; 276(41): 38029-35, 2001 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-11500499

RESUMEN

Ras-GRF1 and Ras-GRF2 constitute a family of calmodulin-regulated guanine-nucleotide exchange factors (GEFs) that activate Ras proteins. Here we show that whereas Ras-GRF1 activated both Ha-Ras and R-Ras in cells, Ras-GRF2 activated only Ha-Ras. The inability of Ras-GRF2 to activate R-Ras was the consequence of the GTPase being post-translationally modified, since Ras-GRF2 activated unprocessed R-Ras as effectively as unprocessed Ha-Ras when assays were performed either in vivo or in vitro. Moreover, Ras-GRF2 failed to activate fully processed R-Ras in vitro. The particular C-terminal lipid attached to the GTPases played an important role in determining signaling specificity, since R-Ras became more responsive to Ras-GRF2 when it was farnesylated instead of geranylgeranylated. Similarly, Ha-Ras became less responsive to Ras-GRF2 when it was geranylgeranylated instead of farnesylated. Analysis of chimeras between Ras-GRF1 and Ras-GRF2 demonstrated that a 30-amino acid segment embedded with their catalytic domains was responsible for recognizing the presence of different lipids on Ras proteins. These results indicate that the specific lipid moiety attached to GTPases can contribute to signaling specificity of Ras-GEFs.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Prenilación de Proteína , Transducción de Señal , Factores de Intercambio de Guanina Nucleótido ras/metabolismo , ras-GRF1/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Línea Celular , Humanos , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Factores de Intercambio de Guanina Nucleótido ras/química , ras-GRF1/química
19.
J Biol Chem ; 278(15): 13278-85, 2003 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-12538592

RESUMEN

The Ras-GRF1 exchange factor, which is regulated by increases in intracellular calcium and the release of G beta gamma subunits from heterotrimeric G proteins, plays a critical role in the activation of neuronal Ras. Activation of G protein-coupled receptors stimulates an increase in the phosphorylation of Ras-GRF1 at certain serine residues. The first of these sites to be identified, Ser(916) in the mouse sequence (equivalent to Ser(898) in the rat sequence), is required for full activation of the Ras exchange factor activity of Ras-GRF1 by muscarinic receptors. We demonstrate here that Ras-GRF1 is highly expressed in rat brain compared with the Sos exchange factor and that there is an increase in incorporation of (32)P into Ser(898) of brain Ras-GRF1 following activation of protein kinase A. Phosphorylation of Ras-GRF1 at Ser(916) is also required for maximal induction of Ras-dependent neurite outgrowth in PC12 cells. A novel antibody (termed 2152) that selectively recognizes Ras-GRF1 when it is phosphorylated at Ser(916/898) confirmed the regulated phosphorylation of Ras-GRF1 by Western blotting in both model systems of transfected COS-7 and PC12 cells and also of the endogenous protein in rat forebrain slices. Indirect confocal immunofluorescence of transfected PC12 cells using antibody 2152 demonstrated reactivity only under conditions in which Ras-GRF1 was phosphorylated at Ser(916/898). Confocal immunofluorescence of cortical slices of rat brain revealed widespread and selective phosphorylation of Ras-GRF1 at Ser(898). In the prefrontal cortex, there was striking phosphorylation of Ras-GRF1 in the dendritic tree, supporting a role for Ras activation and signal transduction in neurotransmission in this area.


Asunto(s)
Prosencéfalo/metabolismo , Serina , Factores de Intercambio de Guanina Nucleótido ras/metabolismo , ras-GRF1/metabolismo , Animales , Sitios de Unión , Células COS , Corteza Cerebral/metabolismo , Chlorocebus aethiops , Colforsina/farmacología , Técnicas In Vitro , Fragmentos de Péptidos/química , Fosfopéptidos/química , Fosforilación , Fosfoserina/metabolismo , Ratas , Proteínas Recombinantes/metabolismo , Tapsigargina/farmacología , Transfección , ras-GRF1/química
20.
J Biol Chem ; 276(2): 1434-8, 2001 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-11013245

RESUMEN

The WW domain of the human PIN1 and p13(SUC1), a subunit of the cyclin-dependent kinase complex, were previously shown to be involved in the regulation of the cyclin-dependent kinase complex activity at the entry into mitosis, by an unresolved molecular mechanism. We report here experimental evidence for the direct interaction of p13(SUC1) with a model CDC25 peptide, dependent on the phosphorylation state of its threonine. Chemical shift perturbation of backbone (1)H(N), (15)N, and (13)Calpha resonances during NMR titration experiments allows accurate identification of the binding site, primarily localized around the anion-binding site, occupied in the crystal structure of the homologous p9(CKSHs2) by a sulfate molecule. The epitope recognized by p13(SUC1) includes the proline at position +1 of the phosphothreonine, as was shown by the decrease in affinity for a mutated CDC25 phosphopeptide, containing an alanine/proline substitution. No direct interaction between the PIN1 WW domain or its catalytic proline cis/trans-isomerase domain and p13(SUC1) was detected, but our study showed that in vitro the WW domain of the human PIN1 antagonizes the binding of the p13(SUC1) to the CDC25 phosphopeptide, by binding to the same phosphoepitope. We thus propose that the full cyclin-dependent kinase complex stimulates the phosphorylation of CDC25 through binding of its p13(SUC1) module to the phosphoepitope of the substrate and that the reported WW antagonism of p13(SUC1)-stimulated CDC25 phosphorylation is caused by competitive binding of both protein modules to the same phosphoepitope.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Fosfotreonina/metabolismo , Prolina/metabolismo , Proteínas de Schizosaccharomyces pombe , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular/química , Epítopos/química , Epítopos/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Peptidilprolil Isomerasa de Interacción con NIMA , Resonancia Magnética Nuclear Biomolecular , Fosfopéptidos/química , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Xenopus laevis , ras-GRF1/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda