Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 28(59): e202201449, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35781716

RESUMO

For efficient targeting of oncogenic K-Ras interaction sites, a mechanistic picture of the Ras-cycle is necessary. Herein, we used NMR relaxation techniques and molecular dynamics simulations to decipher the role of slow dynamics in wild-type and three oncogenic P-loop mutants of K-Ras. Our measurements reveal a dominant two-state conformational exchange on the ms timescale in both GDP- and GTP-bound K-Ras. The identified low-populated higher energy state in GDP-loaded K-Ras has a conformation reminiscent of a nucleotide-bound/Mg2+ -free state characterized by shortened ß2/ß3-strands and a partially released switch-I region preparing K-Ras for the interaction with the incoming nucleotide exchange factor and subsequent reactivation. By providing insight into mutation-specific differences in K-Ras structural dynamics, our systematic analysis improves our understanding of prolonged K-Ras signaling and may aid the development of allosteric inhibitors targeting nucleotide exchange in K-Ras.


Assuntos
Simulação de Dinâmica Molecular , Nucleotídeos , Mutação , Guanosina Trifosfato/química
2.
Chemistry ; 26(9): 1893, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31961031

RESUMO

Invited for the cover of this issue is the group of András Perczel at Eötvös Loránd University, Budapest, Hungary and colleagues from Osaka University, Japan. The image depicts the amyloid buildup of an Exenatide derivate miniprotein (E5) monitored on a simplified hyperspace. Read the full text of the article at 10.1002/chem.201903826.


Assuntos
Amiloide/metabolismo , Amiloide/química , Modelos Biológicos , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Termodinâmica
3.
Chemistry ; 26(9): 1968-1978, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31647140

RESUMO

The amyloid formation of the folded segment of a variant of Exenatide (a marketed drug for type-2 diabetes mellitus) was studied by electronic circular dichroism (ECD) and NMR spectroscopy. We found that the optimum temperature for E5 protein amyloidosis coincides with body temperature and requires well below physiological salt concentration. Decomposition of the ECD spectra and its barycentric representation on the folded-unfolded-amyloid potential energy surface allowed us to monitor the full range of molecular transformation of amyloidogenesis. We identified points of no return (e.g.; T=37 °C, pH 4.1, cE5 =250 µm, cNaCl =50 mm, t>4-6 h) that will inevitably gravitate into the amyloid state. The strong B-type far ultraviolet (FUV)-ECD spectra and an unexpectedly strong near ultraviolet (NUV)-ECD signal (Θ≈275-285   nm ) indicate that the amyloid phase of E5 is built from monomers of quasi-elongated backbone structure (φ≈-145°, ψ≈+145°) with strong interstrand Tyr↔Trp interaction. Misfolded intermediates and the buildup of "toxic" early-stage oligomers leading to self-association were identified and monitored as a function of time. Results indicate that the amyloid transition is triggered by subtle misfolding of the α-helix, exposing aromatic and hydrophobic side chains that may provide the first centers for an intermolecular reorganization. These initial clusters provide the spatial closeness and sufficient time for a transition to the ß-structured amyloid nucleus, thus the process follows a nucleated growth mechanism.


Assuntos
Amiloide/metabolismo , Sequência de Aminoácidos , Amiloide/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Conformação Proteica , Dobramento de Proteína , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa