RESUMO
BACKGROUND: Dairy cattle breeds are populations of limited effective size, subject to recurrent outbreaks of recessive defects that are commonly studied using positional cloning. However, this strategy, based on the observation of animals with characteristic features, may overlook a number of conditions, such as immune or metabolic genetic disorders, which may be confused with pathologies of environmental etiology. RESULTS: We present a data mining framework specifically designed to detect recessive defects in livestock that have been previously missed due to a lack of specific signs, incomplete penetrance, or incomplete linkage disequilibrium. This approach leverages the massive data generated by genomic selection. Its basic principle is to compare the observed and expected numbers of homozygotes for sliding haplotypes in animals with different life histories. Within three cattle breeds, we report 33 new loci responsible for increased risk of juvenile mortality and present a series of validations based on large-scale genotyping, clinical examination, and functional studies for candidate variants affecting the NOA1, RFC5, and ITGB7 genes. In particular, we describe disorders associated with NOA1 and RFC5 mutations for the first time in vertebrates. CONCLUSIONS: The discovery of these many new defects will help to characterize the genetic basis of inbreeding depression, while their management will improve animal welfare and reduce losses to the industry.
Assuntos
Genes Recessivos , Animais , Bovinos , Mineração de Dados , Doenças dos Bovinos/genética , HaplótiposRESUMO
Channel catfish is an important species for aquaculture that exhibits a sexually dimorphic growth in favor of males. Genetic sexing and development of sex markers are crucial for the early identification of sex and of particular genotypes (YY males) for the production of all-male population in channel catfish aquaculture. In this study, we sequenced genomic DNA from pools of males and pools of females to better characterize the sex determining region (SDR) of channel catfish and to develop sex-specific markers for genetic sexing. Performing comparative analyses on male and female pooled genomic reads, we identified a large SDR (â¼8.3 Mb) in the middle of channel catfish linkage group 4 (LG04). This non-recombining SDR contains a high-density of male-specific (Y chromosome) fixed single nucleotide polymorphisms (SNPs) along with â¼ 185 kb male-specific insertions or deletions. This SDR contains 95 annotated protein-encoding genes, including the recently reported putative channel catfish master sex determining (MSD) gene, breast cancer anti-estrogen resistance protein 1 (bcar1), located at one edge of the SDR. No sex-specific SNPs and/or indels were found in the coding sequence of bcar1, but one male-specific SNP was identified in its first intron. Based on this genomic information, we developed a PCR-based sex-specific genetic test. Genotyping results confirmed strong linkage between phenotypic sexes and the identified SDR in channel catfish. Our results confirm, using a Pool-Seq approach, that channel catfish is male heterogametic (XX-XY) with a large SDR on the LG04 sex chromosome. Furthermore, our genotyping primers can be used to identify XX, XY, and YY fish that will facilitate future research on sex determination and aquaculture applications in channel catfish.
Assuntos
Ictaluridae , Animais , Masculino , Feminino , Ictaluridae/genética , Genótipo , Ligação Genética , Genoma , Cromossomo YRESUMO
Historical genomes can provide important insights into recent genomic changes in horses, especially the development of modern breeds. In this study, we characterized 8.7 million genomic variants from a panel of 430 horses from 73 breeds, including newly sequenced genomes from 20 Clydesdales and 10 Shire horses. We used this modern genomic variation to impute the genomes of four historically important horses, consisting of publicly available genomes from 2 Przewalski's horses, 1 Thoroughbred, and a newly sequenced Clydesdale. Using these historical genomes, we identified modern horses with higher genetic similarity to those in the past and unveiled increased inbreeding in recent times. We genotyped variants associated with appearance and behavior to uncover previously unknown characteristics of these important historical horses. Overall, we provide insights into the history of Thoroughbred and Clydesdale breeds and highlight genomic changes in the endangered Przewalski's horse following a century of captive breeding.
RESUMO
Inspired by the production of reference data sets in the Genome in a Bottle project, we sequenced one Charolais heifer with different technologies: Illumina paired-end, Oxford Nanopore, Pacific Biosciences (HiFi and CLR), 10X Genomics linked-reads, and Hi-C. In order to generate haplotypic assemblies, we also sequenced both parents with short reads. From these data, we built two haplotyped trio high quality reference genomes and a consensus assembly, using up-to-date software packages. The assemblies obtained using PacBio HiFi reaches a size of 3.2 Gb, which is significantly larger than the 2.7 Gb ARS-UCD1.2 reference. The BUSCO score of the consensus assembly reaches a completeness of 95.8%, among highly conserved mammal genes. We also identified 35,866 structural variants larger than 50 base pairs. This assembly is a contribution to the bovine pangenome for the "Charolais" breed. These datasets will prove to be useful resources enabling the community to gain additional insight on sequencing technologies for applications such as SNP, indel or structural variant calling, and de novo assembly.
Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Bovinos , Feminino , Benchmarking , Genoma , Análise de Sequência de DNARESUMO
The understanding of the evolution of variable sex determination mechanisms across taxa requires comparative studies among closely related species. Following the fate of a known master sex-determining gene, we traced the evolution of sex determination in an entire teleost order (Esociformes). We discovered that the northern pike (Esox lucius) master sex-determining gene originated from a 65 to 90 million-year-old gene duplication event and that it remained sex linked on undifferentiated sex chromosomes for at least 56 million years in multiple species. We identified several independent species- or population-specific sex determination transitions, including a recent loss of a Y chromosome. These findings highlight the diversity of evolutionary fates of master sex-determining genes and the importance of population demographic history in sex determination studies. We hypothesize that occasional sex reversals and genetic bottlenecks provide a non-adaptive explanation for sex determination transitions.
Assuntos
Esocidae/genética , Duplicação Gênica , Cromossomos Sexuais/genética , Processos de Determinação Sexual/fisiologia , Animais , Feminino , Masculino , FilogeniaRESUMO
Biological rhythms are a fundamental property of life. The deep ocean covers 66% of our planet surface and is one of the largest biomes. The deep sea has long been considered as an arrhythmic environment because sunlight is totally absent below 1,000 m depth. In the present study, we have sequenced the temporal transcriptomes of a deep-sea species, the ecosystem-structuring vent mussel Bathymodiolus azoricus. We reveal that tidal cycles predominate in the transcriptome and physiology of mussels fixed directly at hydrothermal vents at 1,688 m depth at the Mid-Atlantic Ridge, whereas daily cycles prevail in mussels sampled after laboratory acclimation. We identify B. azoricus canonical circadian clock genes, and show that oscillations observed in deep-sea mussels could be either a direct response to environmental stimulus, or be driven endogenously by one or more biological clocks. This work generates in situ insights into temporal organisation in a deep-sea organism.
Assuntos
Mytilidae/fisiologia , Animais , Ecossistema , Fontes Hidrotermais , Biologia Marinha , PeriodicidadeRESUMO
Yellow perch, Perca flavescens, is an ecologically and economically important species native to a large portion of the northern United States and southern Canada and is also a promising candidate species for aquaculture. However, no yellow perch reference genome has been available to facilitate improvements in both fisheries and aquaculture management practices. By combining Oxford Nanopore Technologies long-reads, 10X Genomics Illumina short linked reads and a chromosome contact map produced with Hi-C, we generated a high-continuity chromosome-scale yellow perch genome assembly of 877.4 Mb. It contains, in agreement with the known diploid chromosome yellow perch count, 24 chromosome-size scaffolds covering 98.8% of the complete assembly (N50 = 37.4 Mb, L50 = 11). We also provide a first characterization of the yellow perch sex determination locus that contains a male-specific duplicate of the anti-Mullerian hormone type II receptor gene (amhr2by) inserted at the proximal end of the Y chromosome (chromosome 9). Using this sex-specific information, we developed a simple PCR genotyping assay which accurately differentiates XY genetic males (amhr2by+ ) from XX genetic females (amhr2by- ). Our high-quality genome assembly is an important genomic resource for future studies on yellow perch ecology, toxicology, fisheries and aquaculture research. In addition, characterization of the amhr2by gene as a candidate sex-determining gene in yellow perch provides a new example of the recurrent implication of the transforming growth factor beta pathway in fish sex determination, and highlights gene duplication as an important genomic mechanism for the emergence of new master sex determination genes.
Assuntos
Proteínas de Peixes/genética , Percas/genética , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Cromossomo Y/genética , Animais , Canadá , Feminino , Duplicação Gênica , Genoma , Genômica , Masculino , Mutagênese Insercional , Percas/classificação , Percas/metabolismo , Filogenia , Estados Unidos , Cromossomo X/genéticaRESUMO
Gammarids are amphipods found worldwide distributed in fresh and marine waters. They play an important role in aquatic ecosystems and are well established sentinel species in ecotoxicology. In this study, we sequenced the transcriptomes of a male individual and a female individual for seven different taxonomic groups belonging to the two genera Gammarus and Echinogammarus: Gammarus fossarum A, G. fossarum B, G. fossarum C, Gammarus wautieri, Gammarus pulex, Echinogammarus berilloni, and Echinogammarus marinus. These taxa were chosen to explore the molecular diversity of transcribed genes of genotyped individuals from these groups. Transcriptomes were de novo assembled and annotated. High-quality assembly was confirmed by BUSCO comparison against the Arthropod dataset. The 14 RNA-Seq-derived protein sequence databases proposed here will be a significant resource for proteogenomics studies of these ecotoxicologically relevant non-model organisms. These transcriptomes represent reliable reference sequences for whole-transcriptome and proteome studies on other gammarids, for primer design to clone specific genes or monitor their specific expression, and for analyses of molecular differences between gammarid species.