Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Synth Catal ; 365(10): 1660-1670, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38515505

RESUMO

The electron donor-acceptor complex-enabled asymmetric photochemical alkylation strategy holds potential to attain elusive chiral α-alkylated aldehydes without an external photoredox catalyst. The photosensitizer-free conditions are beneficial concerning process costs and sustainability. However, lengthy organocatalyst preparation steps as well as limited productivity and difficult scalability render the current approaches unsuitable for synthesis on enlarged scales. Inspired by these limitations, a protocol was developed for the enantioselective α-alkylation of aldehydes based on the synergistic combination of visible light-driven asymmetric organocatalysis and a controlled continuous flow reaction environment. With the aim to reduce process costs, a commercially available chiral catalyst has been exploited to achieve photosensitizer-free enantioselective α-alkylations using phenacyl bromide derivates as alkylating agents. As a result of elaborate optimization and process development, the present flow strategy furnishes an accelerated and inherently scalable entry into enantioenriched α-alkylated aldehydes including a chiral key intermediate of the antirheumatic esonarimod.

2.
J Org Chem ; 88(21): 15523-15529, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37844195

RESUMO

A telescoped continuous flow process is reported for the enantioselective synthesis of chiral precursors of 1-aryl-1,3-diols, intermediates in the synthesis of ezetimibe, dapoxetine, duloxetine, and atomoxetine. The two-step sequence consists of an asymmetric allylboration of readily available aldehydes using a polymer-supported chiral phosphoric acid catalyst to introduce asymmetry, followed by selective epoxidation of the resulting alkene. The process is highly stable for at least 7 h and represents a transition-metal free enantioselective approach to valuable 1-aryl-1,3-diols.

3.
Molecules ; 26(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066109

RESUMO

Bismuth subnitrate is reported herein as a simple and efficient catalyst for the atom-economical synthesis of methyl ketones via Markovnikov-type alkyne hydration. Besides an effective batch process under reasonably mild conditions, a chemically intensified continuous flow protocol was also developed in a packed-bed system. The applicability of the methodologies was demonstrated through hydration of a diverse set of terminal acetylenes. By simply switching the reaction medium from methanol to methanol-d4, valuable trideuteromethyl ketones were also prepared. Due to the ready availability and nontoxicity of the heterogeneous catalyst, which eliminated the need for any special additives and/or harmful reagents, the presented processes display significant advances in terms of practicality and sustainability.

4.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200647

RESUMO

Curcuminoids are the main bioactive components of the well-known Asian spice and traditional medicine turmeric. Curcuminoids have poor chemical stability and bioavailability; in vivo they are rapidly metabolized to a set of bioreduced derivatives and/or glucuronide and sulfate conjugates. The reduced curcuminoid metabolites were also reported to exert various bioactivities in vitro and in vivo. In this work, we aimed to perform a comparative evaluation of curcuminoids and their hydrogenated metabolites from a medicinal chemistry point of view, by determining a set of key pharmacokinetic parameters and evaluating antioxidant potential in relation to such properties.Reduced metabolites were prepared from curcumin and demethoxycurcumin through continuous-flow hydrogenation. As selected pharmacokinetic parameters, kinetic solubility, chemical stability, metabolic stability in human liver microsomes, and parallel artificial membrane permeability assay (PAMPA)-based gastrointestinal and blood-brain barrier permeability were determined. Experimentally determined logP for hydrocurcumins in octanol-water and toluene-water systems provided valuable data on the tendency for intramolecular hydrogen bonding by these compounds. Drug likeness of the compounds were further evaluated by a in silico calculations. Antioxidant properties in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and oxygen radical absorbance capacity (ORAC) assays were comparatively evaluated through the determination of ligand lipophilic efficiency (LLE). Our results showed dramatically increased water solubility and chemical stability for the reduced metabolites as compared to their corresponding parent compound. Hexahydrocurcumin was found the best candidate for drug development based on a complex pharmacokinetical comparison and high LLE values for its antioxidant properties. Development of tetrahydrocurcumin and tetrahydro-demethoxycurcumin would be limited by their very poor metabolic stability, therefore such an effort would rely on formulations bypassing first-pass metabolism.


Assuntos
Antioxidantes/farmacologia , Antioxidantes/farmacocinética , Diarileptanoides/farmacologia , Diarileptanoides/farmacocinética , Disponibilidade Biológica , Compostos de Bifenilo/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Química Farmacêutica , Curcuma/metabolismo , Curcumina/análogos & derivados , Curcumina/metabolismo , Glucuronídeos/metabolismo , Humanos , Hidrogenação , Microssomos Hepáticos/metabolismo , Picratos/metabolismo , Solubilidade
5.
European J Org Chem ; 2020(43): 6736-6739, 2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33664631

RESUMO

A simple reordering of the reaction sequence allowed the improved synthesis of EIDD-2801, an antiviral drug with promising activity against the SARS-CoV-2 virus, starting from uridine. Compared to the original route, the yield was enhanced from 17 % to 61 %, and fewer isolation/purification steps were needed. In addition, a continuous flow procedure for the final acetonide deprotection was developed, which proved to be favorable toward selectivity and reproducibility.

6.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842358

RESUMO

Protoflavones, a rare group of natural flavonoids with a non-aromatic B-ring, are best known for their antitumor properties. The protoflavone B-ring is a versatile moiety that might be explored for various pharmacological purposes, but the common cytotoxicity of these compounds is a limitation to such efforts. Protoapigenone was previously found to be active against the lytic cycle of Epstein-Barr virus (EBV). Further, the 5-hydroxyflavone moiety is a known pharmacophore against HIV-integrase. The aim of this work was to prepare a series of less cytotoxic protoflavone analogs and study their antiviral activity against HIV and EBV. Twenty-seven compounds, including 18 new derivatives, were prepared from apigenin through oxidative de-aromatization and subsequent continuous-flow hydrogenation, deuteration, and/or 4'-oxime formation. One compound was active against HIV at the micromolar range, and three compounds showed significant activity against the EBV lytic cycle at the medium-low nanomolar range. Among these derivatives, protoapigenone 1'-O-isopropyl ether (6) was identified as a promising lead that had a 73-times selectivity of antiviral over cytotoxic activity, which exceeds the selectivity of protoapigenone by 2.4-times. Our results open new opportunities for designing novel potent and safe anti-EBV agents that are based on the natural protoflavone moiety.


Assuntos
Antineoplásicos/farmacologia , Cicloexanonas/farmacologia , Flavonas/farmacologia , Herpesvirus Humano 4/efeitos dos fármacos , Antineoplásicos/química , Cicloexanonas/química , Éteres/química , Flavonas/química , Herpesvirus Humano 4/fisiologia , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Relação Estrutura-Atividade , Fenômenos Fisiológicos Virais , Replicação Viral/efeitos dos fármacos
7.
Chem Rec ; 16(3): 1018-33, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26997251

RESUMO

There is a great need for effective transformations and a broad range of novel chemical entities. Continuous-flow (CF) approaches are of considerable current interest: highly efficient and selective reactions can be performed in CF reactors. The reaction setup of CF reactors offers a wide variety of possible points where versatility can be introduced. This article presents a number of selective and highly efficient gas-liquid-solid and liquid-solid reactions involving a range of reagents and immobilized catalysts. Enantioselective transformations through catalytic hydrogenation and organocatalytic reactions are included, and isotopically labelled compounds and pharmaceutically relevant 1,2,3-triazoles are synthesized in CF reactors. Importantly, the catalyst bed can be changed to a solid-phase peptide synthesis resin, with which peptide synthesis can be performed with the utilization of only 1.5 equivalents of the amino acid.


Assuntos
Triazóis/química , Alcaloides/síntese química , Alcaloides/química , Catálise , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Hidrogenação , Técnicas de Síntese em Fase Sólida , Estereoisomerismo , Triazóis/síntese química
8.
Molecules ; 21(3): 318, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26959006

RESUMO

Flow chemistry-based syntheses of deuterium-labeled analogs of important antidiabetic chalcones were achieved via highly controlled partial C≡C bond deuteration of the corresponding 1,3-diphenylalkynones. The benefits of a scalable continuous process in combination with on-demand electrolytic D2 gas generation were exploited to suppress undesired over-reactions and to maximize reaction rates simultaneously. The novel deuterium-containing chalcone derivatives may have interesting biological effects and improved metabolic properties as compared with the parent compounds.


Assuntos
Chalconas/síntese química , Deutério/química , Hipoglicemiantes/síntese química , Catálise , Chalconas/química , Técnicas de Química Sintética , Hipoglicemiantes/química , Marcação por Isótopo
9.
ChemSusChem ; 17(2): e202301149, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737522

RESUMO

The utilization of water as a sustainable reaction medium has important advantages over traditional organic solvents. Hydroxypropyl methylcellulose has emerged as a biomass-based polymeric additive that enables organic reactions in water through hydrophobic effects. However, such conditions imply slurries as reaction mixtures, where the efficacy of mass transfer and mixing decreases with increasing vessel size. In order to circumvent this limitation and establish an effectively scalable platform for performing hydroxypropyl methylcellulose-mediated aqueous transformations, we utilized oscillatory plug flow reactors that feature a smart dimensioning design principle across different scales. Using nucleophilic aromatic substitutions as valuable model reactions, rapid parameter optimization was performed first in a small-scale instrument having an internal channel volume of 5 mL. The optimal conditions were then directly transferred to a 15 mL reactor, achieving a three-fold scale-up without re-optimizing any reaction parameters. By precisely fine-tuning the oscillation parameters, the system achieved optimal homogeneous suspension of solids, preventing settling of particles and clogging of process channels. Ultimately, this resulted in a robust and scalable platform for performing multiphasic reactions under aqueous conditions.

10.
Green Chem ; 26(8): 4593-4599, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38654978

RESUMO

Asymmetric organocatalysis has been recognized as one of the "top 10 emerging technologies" in chemistry by IUPAC in 2019. Its potential to make chemical processes more sustainable is promising, but there are still challenges that need to be addressed. Developing new and reliable enantioselective processes for reproducing batch reactions on a large scale requires a combination of chemical and technical solutions. In this manuscript, we combine a robust immobilized chiral phosphoric acid with a new packed-bed reactor design. This combination allows scaling up of the enantioselective addition of thiols to imines from a few milligrams to a multi-decagram scale in a continuous flow process without physical or chemical degradation of the catalyst.

11.
Beilstein J Org Chem ; 9: 1508-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23946850

RESUMO

The preparation of novel multi-substituted 1,2,3-triazole-modified ß-aminocyclohexanecarboxylic acid derivatives in a simple and efficient continuous-flow procedure is reported. The 1,3-dipolar cycloaddition reactions were performed with copper powder as a readily accessible Cu(I) source. Initially, high reaction rates were achieved under high-pressure/high-temperature conditions. Subsequently, the reaction temperature was lowered to room temperature by the joint use of both basic and acidic additives to improve the safety of the synthesis, as azides were to be handled as unstable reactants. Scale-up experiments were also performed, which led to the achievement of gram-scale production in a safe and straightforward way. The obtained 1,2,3-triazole-substituted ß-aminocyclohexanecarboxylates can be regarded as interesting precursors for drugs with possible biological effects.

12.
ChemSusChem ; 16(2): e202201868, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36377674

RESUMO

Persulfuric acid is a well-known oxidant in various industrial-scale purification procedures. However, due to its tendency toward explosive decomposition, its usefulness in organic synthesis remained largely underexplored. Herein, a continuous in situ persulfuric acid generator was developed and applied for oxidative esterification of aldehydes under flow conditions. Sulfuric acid served as a readily available and benign precursor to form persulfuric acid in situ. By taking advantage of the continuous-flow generator concept, safety hazards were significantly reduced, whilst a robust and effective approach was ensured for direct transformations of aldehydes to valuable esters. The process proved useful for the transformation of diverse aliphatic as well as aromatic aldehydes, while its preparative capability was verified by the multigram-scale synthesis of a pharmaceutically relevant key intermediate. The present flow protocol demonstrates the safe, sustainable, and scalable application of persulfuric acid in a manner that would not be amenable to conventional batch processing.

13.
Org Lett ; 24(4): 1066-1071, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35050638

RESUMO

A novel approach is reported for the enantioselective flow synthesis of rolipram comprising a telescoped asymmetric conjugate addition-oxidative aldehyde esterification sequence followed by trichlorosilane-mediated nitro group reduction and concomitant lactamization. The telescoped process takes advantage of a polystyrene-supported chiral organocatalyst along with in situ-generated persulfuric acid as a robust and scalable oxidant for direct aldehyde esterification. This approach demonstrates significantly improved productivity compared with earlier methodologies while ensuring environmentally benign metal-free conditions.

14.
Mol Divers ; 15(3): 605-11, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20842527

RESUMO

A simple and efficient flow-based technique is reported for the catalytic deuteration of several model nitrogen-containing heterocyclic compounds which are important building blocks of pharmacologically active materials. A continuous flow reactor was used in combination with on-demand pressure-controlled electrolytic D(2) production. The D(2) source was D(2)O, the consumption of which was very low. The experimental set-up allows the fine-tuning of pressure, temperature, and flow rate so as to determine the optimal conditions for the deuteration reactions. The described procedure lacks most of the drawbacks of the conventional batch deuteration techniques, and additionally is highly selective and reproducible.


Assuntos
Química/métodos , Deutério/química , Compostos Heterocíclicos/química , Tecnologia Farmacêutica/métodos , Catálise , Química/instrumentação , Compostos de Nitrogênio/química
15.
Green Chem ; 23(17): 6117-6138, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34671222

RESUMO

Catalytic enantioselective transformations provide well-established and direct access to stereogenic synthons that are broadly distributed among active pharmaceutical ingredients (APIs). These reactions have been demonstrated to benefit considerably from the merits of continuous processing and microreactor technology. Over the past few years, continuous flow enantioselective catalysis has grown into a mature field and has found diverse applications in asymmetric synthesis of pharmaceutically active substances. The present review therefore surveys flow chemistry-based approaches for the synthesis of chiral APIs and their advanced stereogenic intermediates, covering the utilization of biocatalysis, organometallic catalysis and metal-free organocatalysis to introduce asymmetry in continuously operated systems. Single-step processes, interrupted multistep flow syntheses, combined batch/flow processes and uninterrupted one-flow syntheses are discussed herein.

16.
ACS Appl Mater Interfaces ; 13(36): 42650-42661, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34477369

RESUMO

An efficient self-supported Cu(II)Bi(III) bimetallic catalyst with a layered structure was designed and developed. By careful characterization of the as-prepared material, the host structure was identified to exhibit a Sillen-type bismutite framework, with copper(II) ions being loaded as guests. The heterogeneous catalyst enabled C-N and C-S arylations under mild reaction conditions and with high chemoselectivities, thus furnishing valuable phenothiazines via heterocyclization with wide substrate tolerance. As corroborated by detailed catalytic studies, the cooperative, bifunctional catalyst, bearing Lewis acid sites along with copper(II) catalytic sites, facilitated an intriguing concerted C-N/C-S heterocyclization mechanism. The heterogeneous nature of the catalytic reactions was verified experimentally. Importantly, the catalyst was successfully recycled and reused multiple times, persevering its original structural order as well as its initial activity.

17.
Inorg Chem ; 49(10): 4620-5, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20405836

RESUMO

Potential metal-organic-framework precursors, Zn(4)O complexes with various alicyclic or aromatic carboxylate ligands, were prepared, in many cases quantitatively, from ZnO and the relevant carboxylic acids in the presence of trace amounts of water. The complexes obtained were characterized with various classical (titration) and instrumental (IR and NMR spectroscopies) methods and molecular modeling (PM3 and PM6 semiempirical quantum chemical methods and HF/6-31G** ab initio calculations). Structural peculiarities reflected in the success or failure in the synthesis could be rationalized with the combination of IR and NMR spectroscopies and molecular modeling.

18.
ChemSusChem ; 13(7): 1800-1807, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-31894652

RESUMO

Reductions of amides and esters are of critical importance in synthetic chemistry, and there are numerous protocols for executing these transformations employing traditional batch conditions. Notably, strategies based on flow chemistry, especially for amide reductions, are much less explored. Herein, a simple process was developed in which neat borane dimethylsulfide complex (BH3 ⋅DMS) was used to reduce various esters and amides under continuous-flow conditions. Taking advantage of the solvent-free nature of the commercially available borane reagent, high substrate concentrations were realized, allowing outstanding productivity and a significant reduction in E-factors. In addition, with carefully optimized short residence times, the corresponding alcohols and amines were obtained in high selectivity and high yields. The synthetic utility of the inexpensive and easily implemented flow protocol was further corroborated by multigram-scale syntheses of pharmaceutically relevant products. Owing to its beneficial features, including low solvent and reducing agent consumption, high selectivity, simplicity, and inherent scalability, the present process demonstrates fewer environmental concerns than most typical batch reductions using metal hydrides as reducing agents.

19.
Org Lett ; 22(20): 8122-8126, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33026815

RESUMO

The two-step flow asymmetric synthesis of chiral γ-nitrobutyric acids as key intermediates of the GABA analogues baclofen, phenibut, and fluorophenibut is reported on a multigram scale. The telescoped process comprises an enantioselective Michael-type addition facilitated by a polystyrene-supported heterogeneous organocatalyst under neat conditions followed by in situ-generated performic acid-mediated aldehyde oxidation. Simple access to valuable optically active substances is provided with key advances in terms of productivity and sustainability compared to those of previous batch approaches.

20.
Chem Sci ; 10(48): 11141-11146, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-32206263

RESUMO

The catalytic enantioselective synthesis of the chiral key intermediate of the antidepressant (-)-paroxetine is demonstrated as a continuous flow process on multi-gram scale. The critical step is a solvent-free organocatalytic conjugate addition followed by a telescoped reductive amination-lactamization-amide/ester reduction sequence. Due to the efficient heterogeneous catalysts and the solvent-free or highly concentrated conditions applied, the flow method offers key advances in terms of productivity and sustainability compared to earlier batch approaches.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa