Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 28(2): 253-263, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31558840

RESUMO

Insights into individual differences in gene expression and its heritability (h2) can help in understanding pathways from DNA to phenotype. We estimated the heritability of gene expression of 52,844 genes measured in whole blood in the largest twin RNA-Seq sample to date (1497 individuals including 459 monozygotic twin pairs and 150 dizygotic twin pairs) from classical twin modeling and identity-by-state-based approaches. We estimated for each gene h2total, composed of cis-heritability (h2cis, the variance explained by single nucleotide polymorphisms in the cis-window of the gene), and trans-heritability (h2res, the residual variance explained by all other genome-wide variants). Mean h2total was 0.26, which was significantly higher than heritability estimates earlier found in a microarray-based study using largely overlapping (>60%) RNA samples (mean h2 = 0.14, p = 6.15 × 10-258). Mean h2cis was 0.06 and strongly correlated with beta of the top cis expression quantitative loci (eQTL, ρ = 0.76, p < 10-308) and with estimates from earlier RNA-Seq-based studies. Mean h2res was 0.20 and correlated with the beta of the corresponding trans-eQTL (ρ = 0.04, p < 1.89 × 10-3) and was significantly higher for genes involved in cytokine-cytokine interactions (p = 4.22 × 10-15), many other immune system pathways, and genes identified in genome-wide association studies for various traits including behavioral disorders and cancer. This study provides a thorough characterization of cis- and trans-h2 estimates of gene expression, which is of value for interpretation of GWAS and gene expression studies.


Assuntos
Interação Gene-Ambiente , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Adolescente , Adulto , Idoso , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas , RNA-Seq/métodos , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética
2.
Orphanet J Rare Dis ; 11(1): 97, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476530

RESUMO

BACKGROUND: Huntington's disease (HD) is a devastating brain disorder with no effective treatment or cure available. The scarcity of brain tissue makes it hard to study changes in the brain and impossible to perform longitudinal studies. However, peripheral pathology in HD suggests that it is possible to study the disease using peripheral tissue as a monitoring tool for disease progression and/or efficacy of novel therapies. In this study, we investigated if blood can be used to monitor disease severity and progression in brain. Since previous attempts using only gene expression proved unsuccessful, we compared blood and brain Huntington's disease signatures in a functional context. METHODS: Microarray HD gene expression profiles from three brain regions were compared to the transcriptome of HD blood generated by next generation sequencing. The comparison was performed with a combination of weighted gene co-expression network analysis and literature based functional analysis (Concept Profile Analysis). Uniquely, our comparison of blood and brain datasets was not based on (the very limited) gene overlap but on the similarity between the gene annotations in four different semantic categories: "biological process", "cellular component", "molecular function" and "disease or syndrome". RESULTS: We identified signatures in HD blood reflecting a broad pathophysiological spectrum, including alterations in the immune response, sphingolipid biosynthetic processes, lipid transport, cell signaling, protein modification, spliceosome, RNA splicing, vesicle transport, cell signaling and synaptic transmission. Part of this spectrum was reminiscent of the brain pathology. The HD signatures in caudate nucleus and BA4 exhibited the highest similarity with blood, irrespective of the category of semantic annotations used. BA9 exhibited an intermediate similarity, while cerebellum had the least similarity. We present two signatures that were shared between blood and brain: immune response and spinocerebellar ataxias. CONCLUSIONS: Our results demonstrate that HD blood exhibits dysregulation that is similar to brain at a functional level, but not necessarily at the level of individual genes. We report two common signatures that can be used to monitor the pathology in brain of HD patients in a non-invasive manner. Our results are an exemplar of how signals in blood data can be used to represent brain disorders. Our methodology can be used to study disease specific signatures in diseases where heterogeneous tissues are involved in the pathology.


Assuntos
Encéfalo/metabolismo , Doença de Huntington/sangue , Doença de Huntington/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/patologia , Progressão da Doença , Expressão Gênica/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Huntington/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa