Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
BMC Public Health ; 24(1): 167, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216908

RESUMO

BACKGROUND: Malnutrition causes nutrient deficiencies that have both physical and clinical consequences in severe acute malnutrition children. Globally, there were 47 million wasted children under the age of five in 2019. One in four were located in sub-Saharan Africa, with half being in South Asia. This study aims to apply the Boruta algorithm to identify the determinants of undernutrition among children under five living in Dera Ghazi Khan, one of the marginalized districts of densely populated Punjab Province in Pakistan. METHODS: A multicenter cross-sectional study design was used to collect data from 185 children with severe acute malnutrition aged under five years visiting the OTPs centers located in Dera Ghazi Khan, Punjab, Pakistan. A purposive sampling technique was used to collect data using a pretested structured questionnaire from parents/caregivers regarding family sociodemographic characteristics, child nutrition, and biological and healthcare characteristics. Anthropometric measurements, including height, weight, and mid-upper arm circumference, were collected. The Boruta models were used to incorporate the children's anthropometric, nutritional, and household factors to determine the important predictive variables for undernutrition using the Boruta package in R studio. RESULTS: This study included 185 children, with a mean age of 15.36 ± 10.23 months and an MUAC of 10.19 ± 0.96 cm. The Boruta analysis identifies age, mid-upper arm circumference, weaning practices, and immunization status as important predictors of undernutrition. Income per month, exclusive breastfeeding, and immunization status were found to be key factors of undernutrition in children under the age of five. CONCLUSION: This study highlights age, mid-upper arm circumference, weaning practices, and immunization status as key determinants of weight-for-height and weight-for-age in children under five years. It also suggests that economic context may influence undernutrition. The findings can guide targeted strategies for combating undernutrition.


Assuntos
Desnutrição , Desnutrição Aguda Grave , Criança , Humanos , Lactente , Pré-Escolar , Idoso , Desnutrição/diagnóstico , Desnutrição/epidemiologia , Estado Nutricional , Estudos Transversais , Paquistão/epidemiologia , Desnutrição Aguda Grave/epidemiologia , Prevalência
2.
J Sci Food Agric ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958028

RESUMO

BACKGROUND: Poultry processing generates a large amount of industrial waste, which is rich in collagen content. This waste can be utilized for the extraction of valuable components such as gelatin, which can be used as an alternative to mammalian gelatin (porcine and bovine). RESULTS: Gelatins were analyzed for their yield, proximate analysis, pH, color, viscosity, bloom strength, and texture profile analysis. The yield of broiler chicken feet gelatin (BCFG) was slightly higher (7.93%) as compared to native chicken feet gelatin (NCFG) (7.06%). The protein content was 85.92% and 82.53% for BCFG and NCFG. Both gelatin had moisture content in the standard range (< 15) as given by Gelatin Manufacturers of Europe (GME). Both gelatins showed higher bloom strength (326 g for NCFG and 203 g for BCFG) at 6.67% gelatin concentration, classified as high bloom. Fourier-transform infrared (FTIR) analysis showed amide I, amide A, amide B at 1636 cm-1, 3302 cm-1, 2945 cm-1 for NCFG and 1738 cm-1, 3292 cm-1, 2920 cm-1 for BCFG. At 6.67% gelatin concentration, hardness and cohesiveness values were also higher than commercial gelatin previously studied. The pH values for NCFG were 5.43 and BCFG was 5.31. Both NCFG and BCFG viscosities (4.43 and 3.85 cP) were in the optimum range of commercial gelatins (2-7 cP). CONCLUSION: Hence, the present study concluded that both NCFG and BCFG have a huge potential to replace commercial mammalian gelatins (porcine and bovine) in the food industries. However further studies should be done to optimize the extraction process. © 2024 Society of Chemical Industry.

3.
Crit Rev Food Sci Nutr ; : 1-29, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594230

RESUMO

Animal-derived foods are susceptible to microbial spoilage due to their superior nutritional composition and high moisture content. Among the various options, edible packaging is a relatively nascent area and can effectively control microbial growth without substantially affecting the sensory and techno-functional properties. Numerous studies have evaluated the effect of edible packaging systems on the microbial quality of animal-derived foods, however, a review that specifically covers the effect of edible packaging on animal foods and summarizes the findings of these studies is missing in the literature. To fill this gap, the present review analyses the findings of the studies on animal foods published during the last five years. Studies have reported edible-packaging systems for improving microbial stability of animal foods using different biopolymers (proteins, polysaccharides, lipids, and their derivatives) and bioactive ingredients (phytochemicals, peptides, plant extracts, essential oils, and their nanoparticles, nanoemulsions or coarse emulsions). In general, nanoparticles and nanoemulsions are more effective in controlling microbial spoilage in animal foods compared to the direct addition of bioactive agents to the film matrices. Studies have reported the use of non-thermal and emerging technologies in combination with edible packaging systems for improved food safety or their use for enhancing functionality, bioactivity and characteristics of the packaging systems. Future studies should focus on developing sustainable packaging systems using widely available biopolymers and bioactive ingredients and should also consider the economic feasibility at the commercial scale.

4.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36762672

RESUMO

Osteoarthritis (OA) is a common joint disease and has been studied extensively in recent years as no promising therapy available so far for its treatment and remains a great challenge for health care specialists. Although the identification of some major mechanisms that contribute to this disease suggests a plethora of bioactive agents in tackling the associated complications yet OA's pathophysiology is still poorly understood owing to complex mechanistic changes observed. Experimental research is now exploring a wide range of therapeutically effective agents in an effort to find a way to repair OA-related joint degeneration and halt it from getting worse. Data was acquired and reviewed from most relevant and recent studies. This review summarizes the studies that are currently available and focuses on how various unconventional functional oils affect osteoarthritis and the affected joint tissues. An analysis of the recent scientific literature allowed us to highlight the potential anti-arthritic properties of edible oils and their main constituents, which seems to suggest an interesting new potential therapeutic application. Due to eccentric nature of OA, it is necessary to concentrate initially on the management of symptoms. The evidence supporting functional oils chondroprotective potential is still accumulating, underpinning a global need for more sustainable natural sources of treatment. More clinical research that focuses on the consequences of long-term treatment, possible negative effects, and epigenetic implications is necessary to get optimistic results. However, different animal or clinical studies suggest that linolenic and linoleic fatty acids decreased chondrocyte oxidative stress, cartilage breakdown, and expression of inflammatory markers. Distinct fatty acids along with minor components of oils also reduced the generation of prostaglandins and decreased oxidative stress. Furthermore, the potential roles of the main components of edible oils and possible negative results (if any) are also reported. While no severe side effects have been reported for any edible oils. Overall, these studies identify and support the use of functional oils as an adjuvant therapy for the management of OA and as a means of symptomatic alleviation for OA patients. However, to prove the effectiveness or to draw precise conclusions, high-quality clinical trials are required.

5.
J Food Sci Technol ; 60(7): 2031-2041, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37415847

RESUMO

This study aimed to prepare a stirred type of fat-free yogurt from enzymatically hydrolyzed potato powder (EHPP) and skimmed milk powder (SMP) without changing its quality and consumer acceptance. The yogurt formulations prepared contained different amount of EHPP 0, 10, 25 and 50% and were stored for 28 days at 4 °C and observed that with increasing substitution ratio, acid production was increased while the viability of lactic acid bacteria was decreased after 28 days of storage at 4 °C. The antioxidant activities (2-Diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging activity and ferric reducing antioxidant power (FRAP) of the yogurt were increased with increasing EHPP over the storage period. The yogurt formulations having 25 to 50% EHPP has the highest DPPH free radical scavenging activity and FRAP values. Water holding capacity (WHC) was decreased over the storage period with 25% EHPP. The hardness, adhesiveness and gumminess were decreased while no significant change was found in springiness with EHPP addition over the storage period. The rheological analysis showed an elastic behavior of yogurt gels with EHPP supplementation. The sensory results of yogurt containing 25% EHPP have the highest values of taste and acceptance. Yogurt in combination with EHPP and SMP has the higher levels of WHC than non-supplemented yogurt and better stability was recorded during storage. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05737-9.

6.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36200872

RESUMO

Pistachio (Pistacia vera L.) is consumed in almost every part of the world enclosed in shells that are thrown out in baskets. Similarly, hulls separated from pistachio are discarded as waste in food processing industries. These waste materials contain functional constituents having immense industrial and nutraceutical applications. This review article summarizes the scientific investigations regarding the functional constituents and bioactive compounds in pistachio shells (PSs) and pistachio hulls (PHs). It also highlights the nutraceutical potential exhibited by functionally active compounds as well as their potential applications in various industries including nutraceutical, medicinal, and feed industries together with biosynthetic development of useful products and wastewater treatment. Pistachio waste (PW) comprising PS and PH is a rich source of various bioactive compounds. PS is full of lignin, cellulose, and hemicellulose. PH is an excellent source of carbohydrates (80.64 ±â€¯0.98%) (including glucose, galactose, rhamnose, arabinose, xylose, mannose, galacturonic acid) as well as ash (6.32 ±â€¯0.26%) and proteins (1.80 ±â€¯0.28%) with small amounts of fats (0.04 ±â€¯0.005%). Owing to its composition, PW can be beneficial in many nutraceuticals, including antioxidation, cytoprotection, anti-obesity, anti-diabetic, anti-melanogenesis, neuroprotection, anti-cancer, anti-mutagenesis, anti-inflammation, and anti-microbial. The waste materials have vast applications in the food industry, such as bio-preservation of oils and meat products, prevention of enzymatic browning in fruits, vegetables, and mushrooms, development of functional cereal and dairy products, production of food enzymes, emulsions, and manufacturing of biodegradable films for food packaging. The use of these waste products to develop and design novel functional foods with improved quality is important for both food industries and food sustainability.

7.
Crit Rev Food Sci Nutr ; : 1-34, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35796706

RESUMO

Regardless of etiology, hepatocarcinogenesis is frequently preceded by a distinctive sequence of chronic necroinflammation, compensatory hepatic regeneration, development of hepatic fibrosis, and ultimately cirrhosis. The liver being central immunomodulators, closely maintains immunotolerance. Any dysregulation in this management of immunotolerance is a hallmark of chronic hepatic disease and hepatocellular carcinoma (HCC). Apart from other malignancies, hepatocellular carcinoma accounts for 90% of liver cancers. Several emerging evidences have recognized diet as lifestyle associated risk factor in HCC development. However, natural compounds have the potential to fight hepatoma aggressiveness via inhibition of cellular proliferation and modulation of oncogenic pathways. This review aimed to identify the several plant-based foods for their protective role in HCC prevention by understating the molecular mechanisms involved in inhibition of progression and proliferation of cancer. Information from relevant publications in which several plant-based foods demonstrated protective potential against HCC has been integrated as well as evaluated. For data integration, Science direct, Google scholar, and Scopus websites were used. Nutrition-based approaches in the deterrence of several cancers offer a substantial benefit to currently used medical therapies and should be implemented more often as an adjunct to first-line medical therapy. Furthermore, the inclusion of these plant-based foods (vegetables, fruits, herbs, and spices) may improve general health and decline cancer incidence.

8.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35950635

RESUMO

Food Traceability 4.0 (FT 4.0) is about tracing foods in the era of the fourth industrial revolution (Industry 4.0) with techniques and technologies reflecting this new revolution. Interest in food traceability has gained momentum in response to, among others events, the outbreak of the COVID-19 pandemic, reinforcing the need for digital food traceability that prevents food fraud and provides reliable information about food. This review will briefly summarize the most common conventional methods available to determine food authenticity before highlighting examples of emerging techniques that can be used to combat food fraud and improve food traceability. A particular focus will be on the concept of FT 4.0 and the significant role of digital solutions and other relevant Industry 4.0 innovations in enhancing food traceability. Based on this review, a possible new research topic, namely FT 4.0, is encouraged to take advantage of the rapid digitalization and technological advances occurring in the era of Industry 4.0. The main FT 4.0 enablers are blockchain, the Internet of things, artificial intelligence, and big data. Digital technologies in the age of Industry 4.0 have significant potential to improve the way food is traced, decrease food waste and reduce vulnerability to fraud opening new opportunities to achieve smarter food traceability. Although most of these emerging technologies are still under development, it is anticipated that future research will overcome current limitations making large-scale applications possible.

9.
Crit Rev Food Sci Nutr ; : 1-31, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930319

RESUMO

The food industry has recently been under unprecedented pressure due to major global challenges, such as climate change, exponential increase in world population and urbanization, and the worldwide spread of new diseases and pandemics, such as the COVID-19. The fourth industrial revolution (Industry 4.0) has been gaining momentum since 2015 and has revolutionized the way in which food is produced, transported, stored, perceived, and consumed worldwide, leading to the emergence of new food trends. After reviewing Industry 4.0 technologies (e.g. artificial intelligence, smart sensors, robotics, blockchain, and the Internet of Things) in Part I of this work (Hassoun, Aït-Kaddour, et al. 2022. The fourth industrial revolution in the food industry-Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition, 1-17.), this complimentary review will focus on emerging food trends (such as fortified and functional foods, additive manufacturing technologies, cultured meat, precision fermentation, and personalized food) and their connection with Industry 4.0 innovations. Implementation of new food trends has been associated with recent advances in Industry 4.0 technologies, enabling a range of new possibilities. The results show several positive food trends that reflect increased awareness of food chain actors of the food-related health and environmental impacts of food systems. Emergence of other food trends and higher consumer interest and engagement in the transition toward sustainable food development and innovative green strategies are expected in the future.

10.
Trends Food Sci Technol ; 120: 25-35, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35002078

RESUMO

BACKGROUND: The distressing COVID-19 pandemic has had a substantial impact on public mental health, and the importance of food and nutrients in several aspects of mental health has been recognized. People in isolation or quarantine suffer from severe stress, anger, panic attack, and anxiety. SCOPE AND APPROACH: Although, people who have improved and progressed through medications or vaccines have reduced anxiety levels to some extent yet the efficacy of these measures, in the long run, remains a question. The review depicts that such negative emotional reactions were particularly higher in elderly individuals in the first wave than in other phases. The emotional and behavioral response to the COVID-19 pandemic is multifactorial. From different research studies, it has been found that stress scores were considerably higher for those engaging in unhealthy eating practices. This factor relies not only on external components but on personal and innate ones as well. In the present pandemic, the sustainable development of the food system would have been a major issue; this should be carefully restored to avoid a food crisis in the future. KEY FINDINGS AND CONCLUSIONS: Changes in mind-body interactions are triggered by psychosocial stresses such as interpersonal loss and social rejection. Physiological response (in terms of psychological stress) in COVID-19 affected patients varies due to individual physical health status. This review explores the relationship between nutrition and mental health as what we eat and think is interlinked with the gut-brain-axis. The role of dietary components along with the Mediterranean diet, DASH diet and use of psychobiotics in improving psychological distress in pandemic induced stress, anxiety and depression has also been discussed.

11.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364010

RESUMO

Syzygium cumini, also called Jamun, or black plum, is an excellent source of bioactive components such as flavonoids, polyphenols, antioxidants, iron, and vitamin C. The Jamun tree is a tropical evergreen blooming plant and is an important medicinal plant from the Myrtaceae family that has been used for a long time in Indian and other traditional medicines across the world. Jamun is mainly cultivated in Asian countries such as Pakistan, India, Sri Lanka, and Bangladesh. Since ancient medicine, it has been utilized to treat a variety of diseases and physiological conditions. Currently, it is mostly used as a medication to treat various metabolic issues, including diabetes, hyperlipidemia, hypertension, obesity, etc. Therefore, Jamun could serve a beneficial role against metabolic syndrome (MS). In this work, the latest available scientific literature on Jamun was collected and the clinical trials investigating its effect on diabetes, hypertension, obesity, and hyperlipidemia were analyzed to find out how Jamun could improve the symptoms and biomarkers of MS. Overall, the results of this study found a significant association of Jamun with the prevention and treatment of these biomarkers of MS. In many studies, Jamun showed pharmacological modifications not only in MS but in many other diseases as well. Currently, its utilization as a folk medicine for the treatment of patients with MS is widely acknowledged. Hence, the findings of a large number of clinical studies confirmed the ameliorating effects of Jamun against MS due to its antioxidation, antidiabetic, anti-inflammation anticarcinogenic, and hyperlipidemic effects. More research is still needed to determine and identify the Jamun compounds and to elucidate their mechanisms of action that are responsible for these astounding bioactive properties and health benefits.


Assuntos
Diabetes Mellitus , Hipertensão , Síndrome Metabólica , Syzygium , Humanos , Síndrome Metabólica/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Obesidade/tratamento farmacológico , Hipertensão/tratamento farmacológico , Sri Lanka , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
12.
Molecules ; 27(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566112

RESUMO

Thrombocytopenia is a clinical manifestation that refers to the low platelet count, i.e., <150 × 103/µL, of blood, resulting in imbalanced hemostasis, which leads to several fatal complications. The causative factors vary greatly, but, as a consequence, they interfere with platelet production and promote destruction, leading to death. Carica papaya leaf has unique therapeutic and medicinal characteristics against thrombocytopenia, and this is supported by scientific studies. Secondary metabolites and minerals in the leaf, such as carpaine and quercetin, promote platelet production, inhibit platelet destruction, and maintain platelet membrane through gene expression activity and the ceasing of viral proteases, respectively. This review explores the scientific studies that support the role of papaya leaf in the form of juice, extract, or powder against thrombocytopenia through animal modeling and clinical trials. Phytochemical profiles of C. papaya leaf revealed the presence of flavonoids, alkaloids, phenols, cardiac glycosides, tannins, terpenes, and saponins, which impart therapeutic potential to the leaf. The therapeutic benefits of the leaf include immunomodulatory, antiviral, antidiabetic, anticancer, antimalarial, antiangiogenic, antibacterial, and antioxidant activities. Several conducted scientific research studies have proved the efficacy of C. papaya leaf against thrombocytopenia, expanding the implication of natural sources to eradicate numerous ailments.


Assuntos
Carica , Trombocitopenia , Animais , Carica/metabolismo , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/metabolismo , Trombocitopenia/tratamento farmacológico
13.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807277

RESUMO

The deactivation of degrading and pectinolytic enzymes is crucial in the fruit juice industry. In commercial fruit juice production, a variety of approaches are applied to inactivate degradative enzymes. One of the most extensively utilized traditional procedures for improving the general acceptability of juice is thermal heat treatment. The utilization of a non-thermal pulsed electric field (PEF) as a promising technology for retaining the fresh-like qualities of juice by efficiently inactivating enzymes and bacteria will be discussed in this review. Induced structural alteration provides for energy savings, reduced raw material waste, and the development of new products. PEF alters the α-helix conformation and changes the active site of enzymes. Furthermore, PEF-treated juices restore enzymatic activity during storage due to either partial enzyme inactivation or the presence of PEF-resistant isozymes. The increase in activity sites caused by structural changes causes the enzymes to be hyperactivated. PEF pretreatments or their combination with other nonthermal techniques improve enzyme activation. For endogenous enzyme inactivation, a clean-label hurdle technology based on PEF and mild temperature could be utilized instead of harsh heat treatments. Furthermore, by substituting or combining conventional pasteurization with PEF technology for improved preservation of both fruit and vegetable juices, PEF technology has enormous economic potential. PEF treatment has advantages not only in terms of product quality but also in terms of manufacturing. Extending the shelf life simplifies production planning and broadens the product range significantly. Supermarkets can be served from the warehouse by increasing storage stability. As storage stability improves, set-up and cleaning durations decrease, and flexibility increases, with only minor product adjustments required throughout the manufacturing process.


Assuntos
Manipulação de Alimentos , Sucos de Frutas e Vegetais , Eletricidade , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Frutas/microbiologia , Pasteurização/métodos , Tecnologia
14.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014396

RESUMO

Fresh fruits and vegetables, being the source of important vitamins, minerals, and other plant chemicals, are of boundless importance these days. Although in agriculture, the green revolution was a milestone, it was accompanied by the intensive utilization of chemical pesticides. However, chemical pesticides have hazardous effects on human health and the environment. Therefore, increasingly stimulating toward more eco-friendly and safer alternatives to prevent postharvest losses and lead to improving the shelf life of fresh fruits and vegetables. Proposed alternatives, natural plant extracts, are very promising due to their high efficacy. The plant-based extract is from a natural source and has no or few health concerns. Many researchers have elaborated on the harmful effects of synthetic chemicals on human life. People are now much more aware of safety and health concerns than ever before. In the present review, we discussed the latest research on natural alternatives for chemical synthetic pesticides. Considering that the use of plant-based extracts from aloe vera, lemongrass, or neem is non-chemical by-products of the fruits and vegetable industry, they are proved safe for human health and may be integrated with economic strategies. Such natural plant extracts can be a good alternative to chemical pesticides and preservatives.


Assuntos
Praguicidas , Verduras , Agricultura , Frutas , Humanos , Praguicidas/farmacologia , Extratos Vegetais/farmacologia
15.
Molecules ; 27(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144643

RESUMO

Health-protective functional foods are gaining popularity in the world of nutrition because they promote excellent health while decreasing pharmaceutical burdens. Chia seeds (CS) (Salvia hispanica L.), the greatest vegetative source of α-linolenic acid, bioactive proteins, and fibers, are among the top unconventional oilseeds shown to have bounteous benefits against various non-communicable diseases. Purposely, this study was designed to integrate roasted CS powder into white-flour-based ordinary bakery goods to improve their nutritional and nutraceutical profiles. CS efficacy in normal and hyperlipidemic Sprague-Dawley rats resulted in mitigating blood glucose, triglycerides, total cholesterol, and low-density lipoprotein cholesterol while elevating high-density lipoprotein cholesterol, hematocrit, hemoglobin, red blood cell counts, and platelets. The nutritional profiling of chia-fortified muffins indicated significant increases of 47% in fat, 92% in fiber, 15% in protein, and 62% in minerals. The farinographic experiments of CS-blends revealed generally improved dough quality features with a significant rise in the degree of softening as fortification levels increased. A marketable recipe for CSF-muffins with several degrees of fortification demonstrated a significant rise in fat, 92% rise in fiber, 15% rise in protein, and 62% rise in minerals. Sensorial evaluation by trained taste panelists revealed a maximum appraisal of the 15% chia-fortified muffins due to aroma, appearance, and overall acceptability, and were forwarded for being acceptable for commercialization.


Assuntos
Salvia , Animais , Glicemia/metabolismo , HDL-Colesterol , LDL-Colesterol , Fibras na Dieta/análise , Alimentos , Extratos Vegetais , Pós , Ratos , Ratos Sprague-Dawley , Salvia/metabolismo , Salvia hispanica , Sementes/química , Triglicerídeos , Ácido alfa-Linolênico
16.
Molecules ; 27(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144719

RESUMO

Emulgel is a new innovatory technique for drug development permitting controlled release of active ingredients for topical administration. We report a stable emulgel of 4% Piper nigrum extract (PNE) prepared using 80% ethanol. The PNE-loaded formulation had an antioxidant activity of 84% and tyrosinase inhibition was 82%. Prepared formulation rendered spherical-shaped globules with high zeta potential (-45.5 mV) indicative of a stable system. Total phenolic contents were 58.01 mg GAE/g of dry extract whereas total flavonoid content was 52.63 mg QE/g of dry extract. Sun protection factor for PNE-loaded emulgel was 7.512 and formulation was stable without any evidence of physical and chemical changes following 90 days of storage. Gas chromatography-mass spectroscopy (GC-MS) revealed seventeen bioactive compounds in the PNE including monoterpenoids, triterpenoids, a tertiary alcohol, fatty acid esters, and phytosterols. In silico studies of GC-MS identified compounds show higher binding affinity in comparison to standard kojic acid indicating tyrosinase inhibition. It can be concluded that PNE-loaded emulgel had prominent antioxidant and tyrosinase inhibition and can be utilized as a promising topical system for anti-aging skin formulation.


Assuntos
Fitosteróis , Piper nigrum , Triterpenos , Alérgenos , Antioxidantes/química , Antioxidantes/farmacologia , Preparações de Ação Retardada , Etanol , Álcoois Graxos , Flavonoides , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase , Monoterpenos , Piper nigrum/química , Extratos Vegetais/química , Sementes
17.
Compr Rev Food Sci Food Saf ; 21(4): 3297-3325, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35638360

RESUMO

Seafood products have been one of the main drivers behind the popularity of high-pressure processing (HPP) in the food industry owing to a high demand for fresh ready-to-eat seafood products and food safety. This review provides an overview of the advanced knowledge available on the use of HPP for production of wholesome and highly nutritive clean label fish and shellfish products. Out of 653 explored items, 65 articles published during 2016-2021 were used. Analysis of the literature showed that most of the earlier work evaluated the HPP effect on physicochemical and sensorial properties, and limited information is available on nutritional aspects. HPP has several applications in the seafood industry. Application of HPP (400-600 MPa) eliminates common seafood pathogens, such as Vibrio and Listeria spp., and slows the growth of spoilage microorganisms. Use of cold water as a pressure medium induces minimal changes in sensory and nutritional properties and helps in the development of clean label seafood products. This technology (200-350 MPa) is also useful to shuck oysters, lobsters, crabs, mussels, clams, and scallops to increase recovery of the edible meat. High-pressure helps to preserve organoleptic and functional properties for an extended time during refrigerated storage. Overall, HPP helps seafood manufacturers to maintain a balance between safety, quality, processing efficiency, and regulatory compliance. Further research is required to understand the mechanisms of pressure-induced modifications and clean label strategies to minimize these modifications.


Assuntos
Alimentos Marinhos , Frutos do Mar , Animais , Peixes , Inocuidade dos Alimentos , Carne
18.
J Food Sci Technol ; 59(1): 202-211, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35068564

RESUMO

The effect of high-intensity ultrasound (HIU), antibrowning agents (C6H806 & CaCl2), and hot water bath (65 °C) treatments on the prevention of enzymatic browning and 2 weeks shelf-life study of fresh-cut mango fruit slices were evaluated. Results showed that HIU treated mangoes have the lowest PPO activity ranging from 76.17 U/mL to 134.12 U/mL, while improved sensorial properties including decay and off-odor, and enhanced bioactive compounds (ascorbic acid, antioxidant capacity and total phenolics) during storage (4 °C). It is stated that HIU treatment as a promising alternative to replace chemical and/or physical methods to prolong the shelf-life and pursue the quality properties in mango fruit during cold storage.

19.
J Food Sci Technol ; 59(3): 1211-1220, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35153331

RESUMO

Fresh pennywort (Centella asiatica) is usually eaten raw as 'ulam' or salad-like lettuce. Unfortunately, the fresh pennywort has the potential to cause foodborne outbreaks due to pathogens present on the surface and between the leaves, as washing the pennywort using tap water alone cannot guarantee that the pathogens are eliminated. Thus, the efficacies of several sanitizing solutions, i.e., sodium chloride, sodium hypochlorite, acetic acid, acidic electrolyzed water (acidic EW), alkaline electrolyzed water (alkaline EW), and a combination of acidic EW and alkaline EW (acidic-alkaline EW), were evaluated for their potential applications as washing solutions for pennywort. Washing using acidic EW alone or in combination with alkaline EW (two-step washing) reduced the microbial count. In sensory evaluation, all sanitizer solutions were accepted by the panellists with a score greater than 5, except those washing with acetic acid. Overall, the use of acidic EW, either alone or in combination with alkaline EW, was the best treatment to decontaminate microbes while maintaining the physicochemical and sensory properties of pennywort leaves.

20.
Microb Pathog ; 159: 105119, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34339796

RESUMO

Staphylococcus aureus is an eminent and opportunistic human pathogen that can colonize in the intestines, skin tissue and perineal regions of the host and cause severe infectious diseases. The presence of complex regulatory network and existence of virulent gene expression along with tuning metabolism enables the S. aureus to adopt the diversity of environments. Two component system (TCS) is a widely distributed mechanism in S. aureus that permit it for changing gene expression profile in response of environment stimuli. TCS usually consist of transmembrane histidine kinase (HK) and cytosolic response regulator. S. aureus contains totally 16 conserved pairs of two component systems, involving in different signaling mechanisms. There is a connection among these regulatory circuits and they can easily have effect on each other's expression. This review has discussed five major types of TCS in S. aureus and covers the recent knowledge of their virulence gene expression. We can get more understanding towards staphylococcal pathogenicity by getting insights about gene regulatory pathways via TCS, which can further provide implications in vaccine formation and new ways for drug design to combat serious infections caused by S. aureus in humans.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa