Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121657

RESUMO

Immunotherapy has revolutionized cancer treatment, but many cancers are not impacted by currently available immunotherapeutic strategies. Here, we investigated inflammatory signaling pathways in neuroblastoma, a classically "cold" pediatric cancer. By testing the functional response of a panel of 20 diverse neuroblastoma cell lines to three different inflammatory stimuli, we found that all cell lines have intact interferon signaling, and all but one lack functional cytosolic DNA sensing via cGAS-STING. However, double-stranded RNA (dsRNA) sensing via Toll-like receptor 3 (TLR3) was heterogeneous, as was signaling through other dsRNA sensors and TLRs more broadly. Seven cell lines showed robust response to dsRNA, six of which are in the mesenchymal epigenetic state, while all unresponsive cell lines are in the adrenergic state. Genetically switching adrenergic cell lines toward the mesenchymal state fully restored responsiveness. In responsive cells, dsRNA sensing results in the secretion of proinflammatory cytokines, enrichment of inflammatory transcriptomic signatures, and increased tumor killing by T cells in vitro. Using single-cell RNA sequencing data, we show that human neuroblastoma cells with stronger mesenchymal signatures have a higher basal inflammatory state, demonstrating intratumoral heterogeneity in inflammatory signaling that has significant implications for immunotherapeutic strategies in this aggressive childhood cancer.


Assuntos
Epigênese Genética/genética , Inflamação/genética , Neuroblastoma/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/genética , Humanos , Fatores Imunológicos/genética , Imunoterapia/métodos , Masculino , Camundongos , Camundongos SCID , Nucleotidiltransferases/genética , RNA de Cadeia Dupla/genética , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética , Transcriptoma/genética
2.
Infect Immun ; 90(2): e0057221, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34807735

RESUMO

Enterotoxigenic Escherichia coli (ETEC) isolates are genetically diverse pathological variants of E. coli defined by the production of heat-labile (LT) and/or heat-stable (ST) toxins. ETEC strains are estimated to cause hundreds of millions of cases of diarrheal illness annually. However, it is not clear that all strains are equally equipped to cause disease, and asymptomatic colonization with ETEC is common in low- to middle-income regions lacking basic sanitation and clean water where ETEC are ubiquitous. Recent molecular epidemiology studies have revealed a significant association between strains that produce EatA, a secreted autotransporter protein, and the development of symptomatic infection. Here, we demonstrate that LT stimulates production of MUC2 mucin by goblet cells in human small intestine, enhancing the protective barrier between pathogens and enterocytes. In contrast, using explants of human small intestine as well as small intestinal enteroids, we show that EatA counters this host defense by engaging and degrading the MUC2 mucin barrier to promote bacterial access to target enterocytes and ultimately toxin delivery, suggesting that EatA plays a crucial role in the molecular pathogenesis of ETEC. These findings may inform novel approaches to prevention of acute diarrheal illness as well as the sequelae associated with ETEC and other pathogens that rely on EatA and similar proteases for efficient interaction with their human hosts.


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Diarreia , Enterócitos , Escherichia coli Enterotoxigênica/metabolismo , Enterotoxinas/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Intestino Delgado , Mucina-2/genética , Mucina-2/metabolismo , Mucinas/metabolismo
3.
J Pediatr Gastroenterol Nutr ; 72(5): 718-722, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33394891

RESUMO

ABSTRACT: Infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can lead to coronavirus-induced disease 2019 (COVID-19). The gastrointestinal (GI) tract is now an appreciated portal of infection. SARS-CoV-2 enters host cells via angiotensin-converting enzyme-2 (ACE2) and the serine protease TMPRSS2. Eosinophilic gastrointestinal disorders (EGIDs) are inflammatory conditions caused by chronic type 2 (T2) inflammation. the effects of the T2 atopic inflammatory milieu on SARS-COV-2 viral entry gene expression in the GI tract is poorly understood. We analyzed tissue ACE2 and TMPRSS2 gene expression in pediatric eosinophilic esophagitis (EoE), eosinophilic gastritis (EG), and in normal adult esophagi using publicly available RNA-sequencing datasets. Similar to findings evaluating the airway, there was no difference in tissue ACE2/TMPRSS2 expression in EoE or EG when compared with control non-EoE/EG esophagus/stomach. ACE2 gene expression was significantly lower in esophagi from children with or without EoE and from adults with EoE as compared with normal adult esophagi. Type 2 immunity and pediatric age could be protective for infection by SARS-CoV-2 in the gastrointestinal tract because of decreased expression of ACE2.


Assuntos
COVID-19 , Enterite , Adulto , Criança , Eosinofilia , Gastrite , Expressão Gênica , Humanos , Peptidil Dipeptidase A/genética , SARS-CoV-2
4.
Clin Exp Allergy ; 50(2): 147-159, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31743536

RESUMO

OBJECTIVE: While chronic inflammation is a well-established risk factor for malignancy, studies evaluating the relationship between allergic inflammation and cancer have revealed conflicting results. Here, we aimed to assess the association between allergic inflammation in the lung (asthma), skin (eczema) or oesophagus (eosinophilic oesophagitis; EoE) and cancer at the organ site. DESIGN: We conducted a systematic review of the literature to identify observational studies (case-control, cohort and cross-sectional) evaluating the association between asthma and lung cancer, eczema and skin cancer, or EoE and oesophageal cancer. Random-effects meta-analysis was performed to define pooled estimates of effects. DATA SOURCES: PubMed, EMBASE and Web of Science. ELIGIBILITY CRITERIA FOR SELECTION: Included studies evaluated the incidence of cancer. RESULTS: Thirty-two studies met the inclusion criteria, 27 in the lung, four in the skin and one in the oesophagus. Meta-analysis of the three studies with prospective data collection of asthma diagnosis revealed a positive association with incident lung cancer (OR 1.27, 95% CI 1.09-1.44); however, this result was not consistently supported by the larger dataset of retrospective studies (OR 1.37, 95% CI 0.90-1.83). Overall, studies in the lung displayed significant heterogeneity (I2 98%, P < .0001), but no significant effect modification on the association between asthma and lung cancer was identified for the variables of sex, smoking or study design. Meta-analysis could not be applied to the four papers reviewed in the skin, but three suggested an association between eczema and non-melanoma skin cancer, while the remaining study failed to identify an association between melanoma and eczema. A single study meeting inclusion criteria showed no association between EoE and oesophageal malignancy. CONCLUSIONS: The current data cannot exclude the possibility of an association between atopy and malignancy the lung, skin and oesophagus. The relationship between allergy and cancer should be explored further in prospective studies that any association identified between these conditions has the potential for significant public health implications.


Assuntos
Asma , Dermatite Atópica , Esofagite Eosinofílica , Neoplasias , Asma/complicações , Asma/epidemiologia , Asma/imunologia , Asma/patologia , Dermatite Atópica/complicações , Dermatite Atópica/epidemiologia , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Esofagite Eosinofílica/complicações , Esofagite Eosinofílica/epidemiologia , Esofagite Eosinofílica/imunologia , Esofagite Eosinofílica/patologia , Humanos , Inflamação/complicações , Inflamação/epidemiologia , Inflamação/imunologia , Inflamação/patologia , Neoplasias/epidemiologia , Neoplasias/etiologia , Neoplasias/imunologia , Neoplasias/patologia
5.
Cell Rep ; 41(3): 111514, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261012

RESUMO

We identify ADIRF-AS1 circadian long non-coding RNA (lncRNA). Deletion of ADIRF-AS1 in U2OS cells alters rhythmicity of clock-controlled genes and expression of extracellular matrix genes. ADIRF-AS1 interacts with all components of the PBAF (PBRM1/BRG1) complex in U2OS cells. Because PBRM1 is a tumor suppressor mutated in over 40% of clear cell renal carcinoma (ccRCC) cases, we evaluate ADIRF-AS1 in ccRCC cells. Reducing ADIRF-AS1 expression in ccRCC cells decreases expression of some PBAF-suppressed genes. Expression of these genes is partially rescued by PBRM1 loss, consistent with ADIRF-AS1 acting in part to modulate PBAF. ADIRF-AS1 expression correlates with survival in human ccRCC, particularly in PBRM1 wild-type, but not mutant, tumors. Loss of ADIRF-AS1 eliminates in vivo tumorigenesis, partially rescued by concurrent loss of PBRM1 only when co-injected with Matrigel, suggesting a PBRM1-independent function of ADIRF-AS1. Our findings suggest that ADIRF-AS1 functions partly through PBAF to regulate specific genes as a BMAL1-CLOCK-regulated, oncogenic lncRNA.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , RNA Longo não Codificante , Humanos , Fatores de Transcrição ARNTL , Carcinogênese/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , RNA Longo não Codificante/genética
6.
Cell Mol Gastroenterol Hepatol ; 13(5): 1449-1467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108658

RESUMO

BACKGROUND & AIMS: Although basal cell hyperplasia is a histologic hallmark of eosinophilic esophagitis (EoE), little is known about the capabilities of epithelial renewal and differentiation in the EoE inflammatory milieu. In murine esophageal epithelium, there are self-renewing and slowly proliferating basal stem-like cells characterized by concurrent expression of CD73 (5'-nucleotidase ecto) and CD104 (integrin ß4). Here, we investigated CD73+CD104+ cells within the basal population of human esophageal epithelium and clarified the biological significance of these cells in the EoE epithelium. METHODS: We performed flow cytometry on esophageal biopsy samples from EoE and non-EoE patients to determine the quantity of CD73+CD104+ cells in the epithelium. Simulating the EoE milieu we stimulated primary patient-derived and immortalized cell line-derived esophageal organoids with interleukin (IL)4 and IL13 and analyzed by flow cytometry, immunohistochemistry, and quantitative reverse-transcription polymerase chain reaction. We performed single-cell RNA sequencing on primary organoids in the setting of IL13 stimulation and evaluated the CD73+CD104+ population. We performed fluorescent-activated cell sorting to purify CD73+CD104+ and CD73- CD104+ populations and seeded these groups in organoid culture to evaluate the organoid formation rate and organoid size. We used RNA interference to knock down CD73 in esophageal organoids to evaluate organoid formation rates and size. We evaluated the effects of signal transducer and activator of transcription 6 (STAT6) signaling inhibition by RNA interference, a STAT6 inhibitor, AS1517499, as well as the proton pump inhibitor omeprazole. RESULTS: EoE patients showed decreased epithelial CD73+CD104+ cell content. IL4 and IL13 stimulation depleted this population in 3-dimensional organoids with a recapitulation of basal cell hyperplasia as corroborated by single-cell RNA sequencing of the organoids, which suggests depletion of CD73+CD104+ cells. The CD73+CD104+ population had enhanced organoid formation compared with the CD73-CD104+ population. Similarly, knock-down of CD73 resulted in decreased organoid formation rate. Genetic and pharmacologic inhibition of STAT6 prevented T helper 2 cytokine-induced depletion of CD73+CD104+ cells. Lastly, omeprazole treatment prevented the effects of IL4 and IL13 on the CD73+CD104+ population. CONCLUSIONS: This study addressed the role of CD73+CD104+ cells in epithelial renewal and homeostasis in the context of EoE. The depletion of the CD73+CD104+ self-renewal population by helper T cell 2 cytokines in EoE milieu may be perpetuating epithelial injury. Future therapies targeting epithelial restitution in EoE could decrease the need for immune modulation and steroid therapy.


Assuntos
Esofagite Eosinofílica , Interleucina-4 , 5'-Nucleotidase/uso terapêutico , Animais , Citocinas , Esofagite Eosinofílica/tratamento farmacológico , Esofagite Eosinofílica/patologia , Homeostase , Humanos , Hiperplasia/patologia , Interleucina-13/farmacologia , Interleucina-13/uso terapêutico , Interleucina-4/uso terapêutico , Camundongos , Omeprazol/farmacologia , Omeprazol/uso terapêutico , Células-Tronco/metabolismo
7.
Curr Protoc Stem Cell Biol ; 52(1): e106, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32105412

RESUMO

The homeostatic proliferation-differentiation gradient in the esophageal epithelium is perturbed under inflammatory disease conditions such as gastroesophageal reflux disease and eosinophilic esophagitis. Herein we describe the protocols for rapid generation (<14 days) and characterization of single-cell-derived, three-dimensional (3D) esophageal organoids from human subjects and mice with normal esophageal mucosa or inflammatory disease conditions. While 3D organoids recapitulate normal epithelial renewal, proliferation, and differentiation, non-cell autonomous reactive epithelial changes under inflammatory conditions are evaluated in the absence of the inflammatory milieu. Reactive epithelial changes are reconstituted upon exposure to exogenous recombinant cytokines. These changes are modulated pharmacologically or genetically ex vivo. Molecular, structural, and functional changes are characterized by morphology, flow cytometry, biochemistry, and gene expression analyses. Esophageal 3D organoids can be translated for the development of personalized medicine in assessment of individual cytokine sensitivity and molecularly targeted therapeutics in esophagitis patients © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Generation of esophageal organoids from biopsy or murine esophageal epithelial sheets Basic Protocol 2: Propagation and cryopreservation of esophageal organoids Basic Protocol 3: Harvesting of esophageal organoids for RNA isolation, immunohistochemistry, and evaluation of 3D architecture Basic Protocol 4: Modeling of reactive epithelium in esophageal organoids.


Assuntos
Células Epiteliais/patologia , Esôfago/patologia , Homeostase , Modelos Biológicos , Organoides/patologia , Animais , Biópsia , Criopreservação , Esofagite Eosinofílica/patologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa