Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 126: 742-753, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503799

RESUMO

The activated sludge process is characterized by high microbial density and diversity, both of which facilitate antibiotic resistance gene transfer. Many studies have suggested that antibiotic and non-antibiotic drugs at sub-inhibitory concentrations are major inducers of conjugative gene transfer. The self-transmissible plasmid pND6-2 is one of the endogenous plasmids harbored in Pseudomonas putida ND6, which can trigger the transfer of another co-occurring naphthalene-degrading plasmid pND6-1. Therefore, to illustrate the potential influence of stimulants on conjugative transfer of pND6-2, we evaluated the effects of four antibiotics (ampicillin, gentamycin, kanamycin, and tetracycline) and naphthalene, on the conjugal transfer efficiency of pND6-2 by filter-mating experiment. Our findings demonstrated that all stimulants within an optimal dose promoted conjugative transfer of pND6-2 from Pseudomonas putida GKND6 to P. putida KT2440, with tetracycline being the most effective (100 µg/L and 10 µg/L), as it enhanced pND6-2-mediated intra-genera transfer by approximately one hundred-fold. Subsequently, seven AS reactors were constructed with the addition of donors and different stimulants to further elucidate the conjugative behavior of pND6-2 in natural environment. The stimulants positively affected the conjugal process of pND6-2, while donors reshaped the host abundance in the sludge. This was likely because stimulant addition enhanced the expression levels of conjugation transfer-related genes. Furthermore, Blastocatella and Chitinimonas were identified as the potential receptors of plasmid pND6-2, which was not affected by donor types. These findings demonstrate the positive role of sub-inhibitory stimulant treatment on pND6-2 conjugal transfer and the function of donors in re-shaping the host spectrum of pND6-2.


Assuntos
Transferência Genética Horizontal , Esgotos , Naftalenos , Tetraciclina , Antibacterianos
2.
Front Chem ; 11: 1125625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742031

RESUMO

Graphyne and its family members (GFMs) are allotropes of carbon (a class of 2D materials) having unique properties in form of structures, pores and atom hybridizations. Owing to their unique properties, GFMs have been widely utilized in various practical and theoretical applications. In the past decade, GFMs have received considerable attention in the area of water purification and desalination, especially in theoretical and computational aspects. More recently, GFMs have shown greater prospects in achieving optimal separation performance than the experimentally derived commercial polyamide membranes. In this review, recent theoretical and computational advances made in the GFMs research as it relates to water purification and desalination are summarized. Brief details on the properties of GFMs and the commonly used computational methods were described. More specifically, we systematically reviewed the various computational approaches employed with emphasis on the predicted permeability and selectivity of the GFM membranes. Finally, the current challenges limiting their large-scale practical applications coupled with the possible research directions for overcoming the challenges are proposed.

3.
Chemosphere ; 290: 133298, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34922973

RESUMO

Freshwater sludge (FS) produced from drinking water treatment plants is generally filter pressed and disposed in the landfill. However, FS could be potentially reused. In this study, FS were processed into biochar and hydrochar via pyrolysis and hydrothermal carbonization, respectively. The sorption characteristics/mechanisms of FS and its derivatives (biochar-B300, B500 and B700 and hydrochar-H140, H160, H180 and H200) for the removal of three typical pollutants (i.e., lead (Pb), phosphorus (P) and enrofloxacin (ENR)) found in swine wastewater were investigated using batch adsorption tests and microstructural analyses. It was found that Pb sorption was relatively enhanced due to the increased electrostatic attraction and surface precipitation of Pb(OH)2 while the anionic phosphate adsorption relatively decreased as a result of enhanced electrostatic repulsion at higher solution pHs. Comparatively, ENR adsorption was less affected by solution pH probably due to dominance of physical adsorption evidenced by the good fitting of the BET isotherm model (R2 = 0.95). The maximum sorption capacities of Pb were in the order of B700≈B500 (71 mg/g)>B300 ~ FS(37 mg/g)>H140 ~ H160 (13 mg/g)>H180 ~ H200 (6 mg/g). The adsorption capacities for P were relatively lower: FS (47 mg/g)>B300 (38 mg/g)>H140 (27 mg/g)>B700 (37 mg/g)≈B500 (24 mg/g)≈H160 (23 mg/g)>H180 (16 mg/g)>H200 (14 mg/g). This study provides an understanding of the sorption characteristics and mechanisms of FS and its carbonaceous products for common cationic, anionic and organic pollutants and elucidates new insights into the reuse of FS for pollutant removal to achieve the waste-to-resource concept and enhance water quality, soil health and food safety.


Assuntos
Esgotos , Poluentes Químicos da Água , Adsorção , Animais , Antibacterianos , Carvão Vegetal , Enrofloxacina , Água Doce , Cinética , Chumbo , Fósforo , Suínos
4.
Sci Total Environ ; 817: 152766, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007603

RESUMO

Integrons are genetic elements that can facilitate rapid spread of antibiotic resistance by insertion and removal of genes. However, knowledge about the diversity and distribution of gene cassettes embedded in class 1 integron is still limited. In this study, we sequenced integron gene cassettes using nanopore sequencing and quantified antibiotic resistance genes (ARGs) and integrase genes in the manured soils and sewages of a bioreactor. The results showed that class 1 integron integrase genes were the most abundant in soils and sewages compared with class 2 and class 3 integrase genes. Long-term manure application exacerbated the enrichment of total ARGs, integrase genes and antibiotic resistance-associated gene cassettes, while antibiotics and heavy metals showed no impact on the overall resistome profile. Sewage treatment could efficiently remove the absolute abundance of integrase genes (~3 orders of magnitude, copies/L) and antibiotic resistance gene cassettes. The resistance gene cassettes mainly carried the ARGs conferring resistance to aminoglycoside and beta-lactams in soils and sewages, some of which were persistent during the sewage treatment. This study underlined that soil and sewage were potential reservoirs for integron-mediated ARGs transfer, indicating that anthropogenic activity played a vital role in the prevalence and diversity of resistance gene cassettes in integrons.


Assuntos
Integrons , Sequenciamento por Nanoporos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Integrons/genética , Esgotos , Solo
5.
Bioresour Technol Rep ; 15: 100713, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36569977

RESUMO

The novel outbreak of Coronavirus disease 19 (COVID-19) and the ensuing global pandemic in 2020, has brought with it a number of unprecedented side effects. This resulted in a number of measures, including state-mandated lockdowns, as well as restrictions to economic and social activity. The direct effects of these measures were felt in the economy, as well as in key institutions within society; however, there were also indirect results from these changes. This review article focuses on these indirect effects, towards sustainable environment. It points to the fact that the net effect has been positive; in terms of reduction in greenhouse emissions, oil exploration activities, and pollution. By extension, at-risk ecosystems have been given improved environmental quality. Taken together, the article traces the progression of the virus and ensuing pandemic, in order to better understand how the environment was sustained.

6.
J Hazard Mater ; 395: 122666, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32315793

RESUMO

The rising water-use intensity, and lack of cost-effective treatment strategy and reuse of hydraulic fracturing flowback (HFF) has become an increasing cause of concern. The present work evaluates the integration of parallel sets of tandem anaerobic-oxic membrane bioreactor (AMBR) with and without nano-Fe for treatment and reuse of real HFF obtained from Ordos Basin, China. Treatment efficiencies in terms of organic conversions, micro-pollutants degradation, resource recovery, and effects of nano-Fe release on membrane fouling were evaluated. Nano-Fe mediated AMBR (FAMBR) system effectively reduce target micro-pollutants (such as Acenaphthylene) at 94.4 % compared to the parallel AMBR system (17.1 % without nano-Fe). Moreover, recovery of potential economic chemicals like Al and P (1.0 and 0.6 mg/g spent nano-Fe) availed using FAMBR system. However, colonization of FAMBR membrane surface by Fe-protein/peptide hydroxocomplexes initiated by Fe-catalyzed microbial extrusions present a huge fouling challenge relative to the AMBR system. Additional evidences from microscopic/spectroscopic analysis of the FAMBR membrane system revealed that despite having a promising outlook, mediation of nano-Fe with AMBR system might result in a major fouling event during HFF treatment. Engineered design of nano-Fe to reduced leached nano-Fe ions in pre-treatment step prior to AMBR treatment system may be of potential research consideration.

7.
Bioresour Technol ; 275: 61-69, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30576915

RESUMO

This study was conducted to examine the effects of controlled addition of liquid (LM) to solid (SM) manure compost using a volume-model technique on the co-composting of SM and LM, and further to investigate the major effects of bulking material sizes and LM types on the co-composting process and final compost characteristics. Results indicated that this volume-model technique played a critical role in reducing leachate generation and improving the overall efficiency of the co-composting process. Specifically, the developed model enhanced the evaporation rates of windrows during the co-composting process. For improved final compost properties, small bulking materials and swine-effluent-based LM were found to be more efficient for organic matter degradation, LM consumption, hazardous metals immobilization, and essential nutrients retention than large bulking materials and biogas-based LM. Thus, process parameter optimizations represent major research options for successful co-composting applications for the future.


Assuntos
Compostagem , Poluentes Ambientais/metabolismo , Nutrientes/metabolismo , Animais , Biocombustíveis , Esterco , Suínos
8.
Bioresour Technol ; 288: 121517, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31121527

RESUMO

This study was conducted to examine the effects of different bulking materials (corncob and ricehusk) on liquid manure consumption, organic matter degradation and pollutants retention in composting process under controlled addition of different types of liquid manures (LM). The results indicated that under the controlled addition of LM, bulking materials with higher content of biodegradable carbon (corncob) and LM with a higher concentration of organic pollutants (swine effluent) were more beneficial for biological heat generation and thus were more efficient for water evaporation, organic matter degradation, LM consumption and pollutants retention during the cocomposting process. Consequently, the optimization of these major influencing factors could compensate for efforts geared towards better utilization of the cocomposting process.


Assuntos
Compostagem , Poluentes Ambientais , Animais , Ingestão de Líquidos , Esterco , Solo , Suínos
9.
RSC Adv ; 8(23): 12799-12807, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35541242

RESUMO

Treatment of N,N-dimethylacetamide (DMAC) wastewater is an important step in achieving the sustainable industrial application of DMAC as an organic solvent. This is the first time that treatment of a high concentration of DMAC in real wastewater has been assessed using membrane bioreactor technology. In this study, an anoxic-oxic membrane bioreactor (MBR) was operated over a month to mineralize concentrated DMAC wastewater. Severe membrane fouling occurred during the short-term operation of the MBR as the membrane flux decreased from 11.52 to 5.28 L (m2 h)-1. The membrane fouling was aggravated by the increased amount of protein fractions present in the MBR mixed liquor. Moreover, results from the excitation-emission matrix analysis identified tryptophan and other protein-like related substances as the major membrane-fouling components. Furthermore, analysis of the DMAC degradation mechanism via high performance liquid chromatography (HPLC) and ion chromatography (IC) revealed that the major degradation products were ammonium and dimethylamine (DMA). Although the MBR system achieved the steady removal of DMAC and chemical oxygen demand (COD) by up to 98% and 80%, respectively at DMAC0 ≤ 7548 mg L-1, DMA was found to have accumulated in the treated effluent. Our investigation provides insight into the prospect and challenges of using MBR systems for DMAC wastewater degradation.

10.
Sci Total Environ ; 642: 77-89, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29894884

RESUMO

Studies on membrane fouling during treatment of oil refinery wastewater (ORW) via membrane bioreactor (MBR) are currently lacking, and associated fouling challenges are largely undocumented. Using advanced chemical and Illumina sequencing approach, we investigated the complex bio-physiochemical interactions responsible for foulant-membrane interactions during treatment of ORW. After nearly 2 months of the MBR operation, COD removal reached maximal of 97.15 ±â€¯1.85%, while oil and grease removal was maintained at 96.6 ±â€¯2.6%, during the treatment duration. Most of the less or non-biodegradable oil moieties (>0.5 µm) progressively accumulated on the membrane as the influent oil concentration increased. Presence of relatively higher unsaturated extracellular polymers (100.6 mg/g VSS) like fulvic acid and aromatic-like compounds at high volumetric loading (~18.7 kg COD/m3/d), enhanced the adsorption of chemical elements (Fe = 88.9, Al = 63.4, and Ce = 0.56 mg/g dry-sludge, respectively). Moreover, shift in microbial community structure to hydrocarbon-utilizing and metals-tolerating genera, as Comamonas and Rhodanobacter, respectively, uncovers major membrane colonizers in ORW treatment via MBR.


Assuntos
Incrustação Biológica , Reatores Biológicos , Membranas Artificiais , Indústria de Petróleo e Gás , Eliminação de Resíduos Líquidos , Esgotos , Águas Residuárias
11.
Environ Pollut ; 237: 28-38, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29466772

RESUMO

High arsenic groundwater generally coexists with elevated Fe2+ concentrations (mg L-1 levels) under reducing conditions, but an explanation for the extremely high arsenic (up to ∼2690) concentrations at very low Fe2+ (i.e., µg L-1 levels) in groundwater of Datong Basin remains elusive. Field groundwater investigation and laboratory microcosm experiments were implemented in this study. The field groundwater was characterized by weakly alkaline (pH 7.69 to 8.34) and reducing conditions (Eh -221.7 to -31.9 mV) and arsenic concentration averages at 697 µg L-1. Acinetobacter (5.9-51.3%), Desulfosporosinus (4.6-30.2%), Brevundimonas (3.9-19%) and Pseudomonas (3.2-14.6%) were identified as the dominant genera in the bacterial communities. Bacterially mediated arsenate reduction, Fe(III) reduction, and sulfate reduction are processes occurring (or having previously occurred) in the groundwater. Results from incubation experiment (27 d) revealed that nitrate, arsenate, and Fe(III)/sulfate reduced sequentially with time under anoxic conditions, while Fe(III) and sulfate reduction processes had no obvious differences, occurring almost simultaneously. Moreover, low Fe2+ concentrations were attributed to initially high pH conditions, which relatively retarded Fe(III) reduction. In addition, arsenic behavior in relation to groundwater redox conditions, matrices, and solution chemistry were elaborated. Bacterial arsenate reduction process proceeded before Fe(III) and sulfate reduction in the incubation experiment, and the total arsenic concentration (dominated by arsenite) gradually increased from ∼7 to 115 µg L-1 as arsenate was reduced. Accordingly, bacterially mediated reductive desorption of arsenate is identified as the main process controlling arsenic mobility, while Fe(III) reduction coupled with sulfate reduction are secondary processes that have also contributed to arsenic enrichment in the study site. Overall, this study provide important insights into the mechanism controlling arsenic mobility under weakly alkaline and reducing conditions, and furnishes that arsenate reduction by bacteria play a major role leading to high accumulation of desorbed arsenite in groundwater.


Assuntos
Arsênio/química , Água Subterrânea/química , Poluentes Químicos da Água/química , Arsênio/análise , Arsênio/metabolismo , Bactérias/metabolismo , China , Compostos Férricos/análise , Compostos Férricos/química , Compostos Férricos/metabolismo , Água Subterrânea/microbiologia , Modelos Químicos , Nitratos/análise , Oxirredução , Microbiologia da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
12.
Sci Total Environ ; 584-585: 458-468, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28185734

RESUMO

Studies have shown that arsenic is desorbed/released into groundwater as a result of bacterial reduction of As(V) and Fe(III). However, bacterial activities like sulfate reduction process can also reduce the content of arsenic in groundwater. In this study, we examined the effects of different biogeochemical processes (e.g. NO3- and SO42- reduction) on arsenic, by investigating the chemical characteristics and bacterial community structure of groundwater in the Datong Basin, northern China. Along the groundwater flow path, arsenic concentration increased from <1 to 947.6µg/L with dominant bacteria change from aerobic (Fluviicola, Rhodococcus) to denitrifying bacteria (Thauera, Gallionella), and then to sulfate reducing bacteria (Desulfosporosinus). According to the groundwater redox sensitive indicators (Eh, NO3-, SO42-/Cl- and Fe2+) concentrations (or ratios), the sampling points were approximately divided into three zones (I, I'' and II). Variation in features of these indicators suggested that the groundwater evolved from a weakly oxidizing environment (Zone I, Eh average 93.3mV, respectively) to strong reducing environment (Zone II, Eh average -101.8mV). In Zone I, bacteria mainly consuming O2 or NO3- were found which inhibits Fe(III) and As(V) reduction reaction, resulting in a low As zone (<1 to 3.3µg/L). However, in Zone II, where O2 and NO3- have been depleted, SO42- reduction appears to be the dominant process, and the Fe(III) and As(V) reduction processes are also occurring and hence, enrichment of As in the groundwater (2.8 to 947.6µg/L, average 285.6µg/L). Besides, bacterial Fe(III) reduction process was retarded due to the weakly alkaline conditions (pH7.60-8.11, average 7.83), but abiotic Fe(III) reduction by HS- may be continued. Therefore, we conclude that the Fe(III) and As(V) reduction processes contributed to arsenic enrichment in the groundwater, and the reductive desorption of arsenate is the main occurring process especially in the weakly alkaline environment. Moreover, NO3- reduction process can significantly restrain the release of arsenic, but the process of SO42- reduction is insignificant for arsenic concentration decline in natural groundwater.


Assuntos
Arsênio/análise , Água Subterrânea/química , Microbiologia da Água , Poluentes Químicos da Água/análise , China , Compostos Férricos/análise , Água Subterrânea/microbiologia , Oxirredução , Movimentos da Água
13.
Sci Total Environ ; 566-567: 771-785, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27239720

RESUMO

Triclosan (TCS) is a broad spectrum antibacterial agent mainly used in Pharmaceutical and Personal Care Products. Its increasing use over recent decades have raised its concentration in the environment, with commonly detectable levels found along the food web-from aquatic organisms to humans in the ecosystem. To date, there is shortage of information on how to investigate TCS's systematic risk on exposed organisms including humans, due to the paucity of systematic information on TCS flows in the anthroposphere. Therefore, a more holistic approach to mass flow balancing is required, such that the systematic risk of TCS in all environmental matrices are evaluated. From the perspective of Substance Flow Analysis (SFA), this review critically summarizes the current state of knowledge on TCS production, consumption, discharge, occurrence in built and natural environments, its exposure and metabolism in humans, and also the negative effects of TCS on biota and humans. Recent risk concerns have mainly focused on TCS removal efficiencies and metabolism, but less attention is given to the effect of mass flows from source to fate during risk exposure. However, available data for TCS SFA is limited but SFA can derive logical systematic information from limited data currently available for systematic risk assessment and reduction, based on mass flow analysis. In other words, SFA tool can be used to develop a comprehensive flow chart and indicator system for the risk assessment and reduction of TCS flows in the anthroposphere, thereby bridging knowledge gaps to streamline uncertainties related to policy-making on exposure pathways within TCS flow-lines. In the final analysis, specifics on systematic TCS risk assessment via SFA, and areas of improvement on human adaptation to risks posed by emerging contaminants are identified and directions for future research are suggested.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Triclosan/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Anti-Infecciosos Locais/efeitos adversos , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa