Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542516

RESUMO

Acute kidney injury (AKI) is a serious health concern with high morbidity and high mortality worldwide. Recently, sexual dimorphism has become increasingly recognized as a factor influencing the severity of the disease. This study explores the gender-specific renoprotective pathways in αMUPA transgenic mice subjected to AKI. αMUPA transgenic male and female mice were subjected to ischemia-reperfusion (I/R)-AKI in the presence or absence of orchiectomy, oophorectomy, and L-NAME administration. Blood samples and kidneys were harvested 48 h following AKI for the biomarkers of kidney function, renal injury, inflammatory response and intracellular pathway sensing of or responding to AKI. Our findings show differing responses to AKI, where female αMUPA mice were remarkably protected against AKI as compared with males, as was evident by the lower SCr and BUN, normal renal histologically and attenuated expression of NGAL and KIM-1. Moreover, αMUPA females did not show a significant change in the renal inflammatory and fibrotic markers following AKI as compared with wild-type (WT) mice and αMUPA males. Interestingly, oophorectomized females eliminated the observed resistance to renal injury, highlighting the central protective role of estrogen. Correspondingly, orchiectomy in αMUPA males mitigated their sensitivity to renal damage, thereby emphasizing the devastating effects of testosterone. Additionally, treatment with L-NAME proved to have significant deleterious impacts on the renal protective mediators, thereby underscoring the involvement of eNOS. In conclusion, gender-specific differences in the response to AKI in αMUPA mice include multifaceted and keen interactions between the sex hormones and key biochemical mediators (such as estrogen, testosterone and eNOS). These novel findings shed light on the renoprotective pathways and mechanisms, which may pave the way for development of therapeutic interventions.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Masculino , Feminino , Animais , Camundongos Transgênicos , NG-Nitroarginina Metil Éster , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Estrogênios , Testosterona , Camundongos Endogâmicos C57BL
2.
Am J Physiol Endocrinol Metab ; 325(5): E621-E623, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819195

RESUMO

Gliflozins provide a breakthrough in the management of type-2 diabetes. In addition to facilitating normoglycemia, these sodium-glucose cotransporter type 2 (SGLT2) inhibitors attenuate obesity, hypertension, dyslipidemia, and fluid retention, reduce cardiovascular morbidity, retard the progression of renal dysfunction, and improve survival. The administration of gliflozins also triggers erythropoietin (EPO) production, with the consequent induction of reticulocytosis and erythrocytosis. The mechanism(s) by which gliflozins induce erythropoiesis is a matter of debate. Whereas the canonical pathway of triggering EPO synthesis is through renal tissue hypoxia, it has been suggested that improved renal oxygenation may facilitate EPO synthesis via noncanonical trails. The latter proposes that recovery of peritubular interstitial fibroblasts producing erythropoietin (EPO) is responsible for enhanced erythropoiesis. According to this hypothesis, enhanced glucose/sodium reuptake by proximal tubules in uncontrolled diabetes generates cortical hypoxia, with injury to these cells. Once transport workload declines with the use of SGLT2i, they recover and regain their capacity to produce EPO. In this short communication, we argue that this hypothesis is incorrect. First, there is no evidence for interstitial cell injury related to hypoxia in the diabetic kidney. Tubular, rather than interstitial cells are prone to hypoxic injury in the diabetic kidney. Moreover, hypoxia, not normoxia, stimulates EPO synthesis by hypoxia-inducible factors (HIFs). Hypoxia regulates EPO synthesis as it blocks HIF prolyl hydroxylases (that initiate HIF alpha degradation), hence stabilizing HIF signals, inducing HIF-dependent genes, including EPO located in the deep cortex, and its production is initiated by the apocrinic formation of HIF-2, colocalized in these same cells.


Assuntos
Nefropatias Diabéticas , Eritropoetina , Policitemia , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Policitemia/metabolismo , Reticulocitose , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Hipóxia/metabolismo , Glucose/metabolismo , Sódio/metabolismo
3.
Ren Fail ; 45(2): 2282707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37975172

RESUMO

BACKGROUND: Concern exists regarding the renal safety of blocking the renin-angiotensin system (RAS) during acute illness, especially in the presence of volume depletion and hemodynamic instability. METHODS: We explored the impact of loop diuretics and RAS blockers on the likelihood of developing acute kidney injury (AKI) or acute kidney functional recovery (AKR) among inpatients. Adjusted odds ratio for AKI, AKR and mortality was calculated, using logistic regression models, with subgroup analysis for patients with estimated glomerular filtration rate (eGFR) <30 ml/min/1.73 m2, corrected for blood pressure measurements. RESULTS: 53,289 patients were included. RAS blockade was associated with reduced adjusted odds ratio for both AKI (0.76, CI 0.70-0.83) AKR (0.55, 0.52-0.58), and mortality within 30 days (0.44, 0.41-0.48), whereas loop diuretics were associated with increased risk of AKI (3.75, 3.42-4.12) and mortality (1.71, 1.58-1.85) and reduced AKR (0.71, 0.66-0.75). Comparable impact of RAS blockers and loop diuretics on renal outcomes and death was found among 6,069 patients with eGFR < 30 ml/min/1.73m2. RAS inhibition and diuretics tended to increase the adjusted odds ratios for AKI and to reduce the likelihood of AKR in hypotensive patients. CONCLUSIONS: Reduced blood pressure, RAS blockers and diuretics affect the odds of developing AKI or AKR among inpatients, suggesting possible disruption in renal functional reserve (RFR). As long as blood pressure is maintained, RAS inhibition seems to be safe and renoprotective in this population, irrespective of kidney function upon admission, and is associated with reduced mortality.


Assuntos
Injúria Renal Aguda , Renina , Humanos , Inibidores de Simportadores de Cloreto de Sódio e Potássio , Angiotensinas , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Estudos Retrospectivos , Rim , Sistema Renina-Angiotensina , Injúria Renal Aguda/etiologia , Diuréticos/efeitos adversos , Antagonistas de Receptores de Angiotensina/efeitos adversos
4.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511227

RESUMO

Congestive heart failure (CHF) is often associated with impaired kidney function. Over- activation of the renin-angiotensin-aldosterone system (RAAS) contributes to avid salt/water retention and cardiac hypertrophy in CHF. While the deleterious effects of angiotensin II (Ang II) in CHF are well established, the biological actions of angiotensin 1-7 (Ang 1-7) are not fully characterized. In this study, we assessed the acute effects of Ang 1-7 (0.3, 3, 30 and 300 ng/kg/min, IV) on urinary flow (UF), urinary Na+ excretion (UNaV), glomerular filtration rate (GFR) and renal plasma flow )RPF) in rats with CHF induced by the placement of aortocaval fistula. Additionally, the chronic effects of Ang 1-7 (24 µg/kg/h, via intra-peritoneally implanted osmotic minipumps) on kidney function, cardiac hypertrophy and neurohormonal status were studied. Acute infusion of either Ang 1-7 or its agonist, AVE 0991, into sham controls, but not CHF rats, increased UF, UNaV, GFR, RPF and urinary cGMP. In the chronic protocols, untreated CHF rats displayed lower cumulative UF and UNaV than their sham controls. Chronic administration of Ang 1-7 and AVE 0991 exerted significant diuretic, natriuretic and kaliuretic effects in CHF rats, but not in sham controls. Serum creatinine and aldosterone levels were significantly higher in vehicle-treated CHF rats as compared with controls. Treatment with Ang 1-7 and AVE 0991 reduced these parameters to comparable levels observed in sham controls. Notably, chronic administration of Ang 1-7 to CHF rats reduced cardiac hypertrophy. In conclusion, Ang 1-7 exerts beneficial renal and cardiac effects in rats with CHF. Thus, we postulate that ACE2/Ang 1-7 axis represents a compensatory response to over-activity of ACE/AngII/AT1R system characterizing CHF and suggest that Ang 1-7 may be a potential therapeutic agent in this disease state.


Assuntos
Insuficiência Cardíaca , Ratos , Animais , Rim/metabolismo , Angiotensina I/farmacologia , Angiotensina I/metabolismo , Fragmentos de Peptídeos/metabolismo , Cardiomegalia/metabolismo , Sistema Renina-Angiotensina , Angiotensina II/metabolismo
6.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293542

RESUMO

The kidney glomerular filtration barrier (GFB) is enriched with heparan sulfate (HS) proteoglycans, which contribute to its permselectivity. The endoglycosidase heparanase cleaves HS and hence appears to be involved in the pathogenesis of kidney injury and glomerulonephritis. We have recently reported, nonetheless, that heparanase overexpression preserved glomerular structure and kidney function in an experimental model of Adriamycin-induced nephropathy. To elucidate mechanisms underlying heparanase function in podocytes-key GFB cells, we utilized a human podocyte cell line and transgenic mice overexpressing heparanase. Notably, podocytes overexpressing heparanase (H) demonstrated significantly higher survival rates and viability after exposure to Adriamycin or hydrogen peroxide, compared with mock-infected (V) podocytes. Immunofluorescence staining of kidney cryo-sections and cultured H and V podocytes as well as immunoblotting of proteins extracted from cultured cells, revealed that exposure to toxic injury resulted in a significant increase in autophagic flux in H podocytes, which was reversed by the heparanase inhibitor, Roneparstat (SST0001). Heparanase overexpression was also associated with substantial transcriptional upregulation of autophagy genes BCN1, ATG5, and ATG12, following Adriamycin treatment. Moreover, cleaved caspase-3 was attenuated in H podocytes exposed to Adriamycin, indicating lower apoptotic cell death in H vs. V podocytes. Collectively, these findings suggest that in podocytes, elevated levels of heparanase promote cytoprotection.


Assuntos
Podócitos , Camundongos , Animais , Humanos , Podócitos/metabolismo , Doxorrubicina/toxicidade , Caspase 3/metabolismo , Peróxido de Hidrogênio/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo , Autofagia , Camundongos Transgênicos , Heparitina Sulfato/metabolismo , Proteoglicanas/metabolismo
7.
J Cell Mol Med ; 25(4): 1884-1895, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33369150

RESUMO

Endothelial dysfunction (ED) is a key feature of diabetes and is a major cause of diabetic vasculopathy. Diabetic patients who also exhibit hyperlipidaemia suffer from accelerated vascular complications. While the deleterious effects of high glucose levels (HG) and hyperlipidaemia alone on ED are well established, the effects of combined hyperlipidaemia and HG have not been thoroughly studied. Therefore, the current study examines whether HG and hyperlipidaemia exert synergistic ED, and explores the mechanisms underlying this phenomenon. We applied multi-disciplinary approaches including cultured HUVECs and HMEC-1 as well as knockout mice CByJ.129S7(B6)-Ldlrtm1Her/J (LDLR-/- ) to investigate the mechanisms underlying combined HG and hyperlipidaemia-induced ED. Incremental doses of glucose in the presence or absence of OxLDL were added to HUVECs and HMEC-1. After 5 days, the status of nitric oxide (NO) and endothelin (ET)-1 systems as well as their signal transduction were assessed using Western blot, ELISA and immunoreactive staining. The effects of chronic combination of HG and hyperlipidaemia on endothelial integrity and function as well as alterations in circulatory NO and ET-1 systems were examined in knockout mice LDLR-/- and their wild-type. HUVEC cells exposed to HG and OxLDL displayed enhanced ET-1 production, more than HG or OxLDL when added alone. Overproduction of ET-1 stems from up-regulation of endothelin converting enzyme (ECE)-1 as observed under these conditions. In contrast, combination of HG and OxLDL dramatically decreased both total endothelial NO synthase (eNOS) by 60%, and activated eNOS (peNOS) by 80%. Moreover, NRF2 decreased by 42% and its active form (pNRF2) by 56%, as compared to baseline. Likewise, ETB levels decreased by 64% from baseline on endothelial cells. Furthermore, diabetic LDLR-/- mice displayed a higher blood pressure, plasma triglycerides, cholesterol, ET-1 and NO2/NO3 levels, when compared with normoglycemic LDLR-/- and BALB mice. Combined hyperglycaemia and hyperlipidaemia activates the ET system and attenuates the nitric oxide system with the Nrf2 signalling pathway. These findings suggest that perturbations in these paracrine systems may contribute to ED.


Assuntos
Endotélio/metabolismo , Hiperglicemia/metabolismo , Hiperlipidemias/metabolismo , Animais , Biomarcadores , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças , Endotelinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hiperglicemia/etiologia , Hiperlipidemias/etiologia , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo
8.
J Cell Mol Med ; 25(8): 3840-3855, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33660945

RESUMO

Congestive heart failure (CHF) is often associated with kidney and pulmonary dysfunction. Activation of the renin-angiotensin-aldosterone system (RAAS) contributes to avid sodium retention, cardiac hypertrophy and oedema formation, including lung congestion. While the status of the classic components of RAAS such as renin, angiotensin converting enzyme (ACE), angiotensin II (Ang II) and angiotensin II receptor AT-1 is well studied in CHF, the expression of angiotensin converting enzyme-2 (ACE2), a key enzyme of angiotensin 1-7 (Ang 1-7) generation in the pulmonary, cardiac and renal systems has not been studied thoroughly in this clinical setting. This issue is of a special interest as Ang 1-7 counterbalance the vasoconstrictory, pro-inflammatory and pro-proliferative actions of Ang II. Furthermore, CHF predisposes to COVID-19 disease severity, while ACE2 also serves as the binding domain of SARS-CoV-2 in human host-cells, and acts in concert with furin, an important enzyme in the synthesis of BNP in CHF, in permeating viral functionality along TMPRSST2. ADAM17 governs ACE2 shedding from cell membranes. Therefore, the present study was designed to investigate the expression of ACE2, furin, TMPRSS2 and ADAM17 in the lung, heart and kidneys of rats with CHF to understand the exaggerated susceptibility of clinical CHF to COVID-19 disease. Heart failure was induced in male Sprague Dawley rats by the creation of a surgical aorto-caval fistula. Sham-operated rats served as controls. One week after surgery, the animals were subdivided into compensated and decompensated CHF according to urinary sodium excretion. Both groups and their controls were sacrificed, and their hearts, lungs and kidneys were harvested for assessment of tissue remodelling and ACE2, furin, TMPRSS2 and ADAM17 immunoreactivity, expression and immunohistochemical staining. ACE2 immunoreactivity and mRNA levels increased in pulmonary, cardiac and renal tissues of compensated, but not in decompensated CHF. Furin immunoreactivity was increased in both compensated and decompensated CHF in the pulmonary, cardiac tissues and renal cortex but not in the medulla. Interestingly, both the expression and abundance of pulmonary, cardiac and renal TMPRSS2 decreased in CHF in correlation with the severity of the disease. Pulmonary, cardiac and renal ADAM17 mRNA levels were also downregulated in decompensated CHF. Circulating furin levels increased in proportion to CHF severity, whereas plasma ACE2 remained unchanged. In summary, ACE2 and furin are overexpressed in the pulmonary, cardiac and renal tissues of compensated and to a lesser extent of decompensated CHF as compared with their sham controls. The increased expression of the ACE2 in heart failure may serve as a compensatory mechanism, counterbalancing the over-activity of the deleterious isoform, ACE. Downregulated ADAM17 might enhance membranal ACE2 in COVID-19 disease, whereas the suppression of TMPRSS2 in CHF argues against its involvement in the exaggerated susceptibility of CHF patients to SARS-CoV2.


Assuntos
Proteína ADAM17/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Furina/metabolismo , Insuficiência Cardíaca/metabolismo , Serina Endopeptidases/metabolismo , Proteína ADAM17/genética , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Modelos Animais de Doenças , Expressão Gênica , Insuficiência Cardíaca/genética , Humanos , Rim/metabolismo , Pulmão/metabolismo , Masculino , Miocárdio/metabolismo , Ratos Sprague-Dawley , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética
9.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L422-L429, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404363

RESUMO

The unique clinical features of COVID-19 disease present a formidable challenge in the understanding of its pathogenesis. Within a very short time, our knowledge regarding basic physiological pathways that participate in SARS-CoV-2 invasion and subsequent organ damage have been dramatically expanded. In particular, we now better understand the complexity of the renin-angiotensin-aldosterone system (RAAS) and the important role of angiotensin converting enzyme (ACE)-2 in viral binding. Furthermore, the critical role of its major product, angiotensin (Ang)-(1-7), in maintaining microcirculatory balance and in the control of activated proinflammatory and procoagulant pathways, generated in this disease, have been largely clarified. The kallikrein-bradykinin (BK) system and chymase are intensively interwoven with RAAS through many pathways with complex reciprocal interactions. Yet, so far, very little attention has been paid to a possible role of these physiological pathways in the pathogenesis of COVID-19 disease, even though BK and chymase exert many physiological changes characteristic to this disorder. Herein, we outline the current knowledge regarding the reciprocal interactions of RAAS, BK, and chymase that are probably turned-on in COVID-19 disease and participate in its clinical features. Interventions affecting these systems, such as the inhibition of chymase or blocking BKB1R/BKB2R, might be explored as potential novel therapeutic strategies in this devastating disorder.


Assuntos
COVID-19/patologia , Quimases/metabolismo , Cininas/metabolismo , Sistema Renina-Angiotensina , SARS-CoV-2/isolamento & purificação , COVID-19/metabolismo , COVID-19/virologia , Humanos
10.
Am J Pathol ; 190(4): 752-767, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035883

RESUMO

The glycocalyx is a layer coating the luminal surface of vascular endothelial cells. It is vital for endothelial function as it participates in microvascular reactivity, endothelium interaction with blood constituents, and vascular permeability. Structural and functional damage to glycocalyx occurs in various disease states. A prominent clinical situation characterized by glycocalyx derangement is ischemia-reperfusion (I/R) of the whole body as well as during selective I/R to organs such as the kidney, heart, lung, or liver. Degradation of the glycocalyx is now considered a cornerstone in I/R-related endothelial dysfunction, which further impairs local microcirculation with a feed-forward loop of organ damage, due to vasoconstriction, leukocyte adherence, and activation of the immune response. Glycocalyx damage during I/R is evidenced by rising plasma levels of its principal constituents, heparan sulfate and syndecan-1. By contrast, the concentrations of these compounds in the circulation decrease after successful protective interventions in I/R, suggesting their use as surrogate biomarkers of endothelial integrity. In light of the importance of the glycocalyx in preserving endothelial cell integrity and its involvement in pathologic conditions, several promising therapeutic strategies to restore the damaged glycocalyx and to attenuate its deleterious consequences have been suggested. This review focuses on alterations of glycocalyx during I/R injury in general (to vital organs in particular), and on maneuvers aimed at glycocalyx recovery during I/R injury.


Assuntos
Permeabilidade Capilar , Endotélio Vascular/metabolismo , Glicocálix/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Humanos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia
11.
Clin Exp Pharmacol Physiol ; 48(12): 1724-1727, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34545593

RESUMO

Renal functional reserve (RFR) reflects the ability of the kidney to enhance glomerular filtration rate (GFR) in response to a protein load. Chronic kidney disease (CKD) leads to diminished RFR, since the capacity for whole-body GFR to increase through hyperfiltration of remaining nephrons is limited. Evaluating 41,456 inpatients following computerised tomography we reported many exhibiting acute kidney injury (AKI) but more patients with recovering kidney function (AKR), presumably reflecting resolution of their critical conditions. The incidences of AKI and AKR were closely co-associated and were both inversely correlated with baseline kidney function. We discuss this phenomenon, arguing that AKR among inpatients with an acute illness, like AKI, may often reflect underlying subtle CKD with diminished RFR.


Assuntos
Pacientes Internados
12.
Pediatr Surg Int ; 37(3): 369-376, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33566162

RESUMO

PURPOSE: We investigate the mechanism of intestinal cell apoptosis and its relation to the time of reperfusion in a rat model of intestinal ischemia-reperfusion (IR). METHODS: Rats were divided into 4 groups: Sham-24 and Sham-48 rats underwent laparotomy without an intentional ischemic intervention and were sacrificed 24 or 48 h hours later; IR-24 and IR-48 rats underwent occlusion of SMA and portal vein for 20 min followed by 24 or 48 h of reperfusion, respectively. Park's injury score, cell proliferation and apoptosis were determined at sacrifice. Proliferation and apoptosis-related gene and protein expression were determined using Real-Time PCR, Western Blot and Immunohistochemistry. RESULTS: IR-24 rats demonstrated a strong increase in cell apoptosis along with an elevated Bax and decreased Bcl-2 expression and a decrease in cell proliferation (vs Sham-24). IR-48 group showed an increase in cell proliferation and a decrease in cell apoptosis compared to IR-24 animals. IR-48 rats demonstrated an increase in apoptotic rate that was accompanied by greater TNF-α mRNA, Fas mRNA and FasL mRNA compared to Sham-48 animals. CONCLUSION: While cell apoptosis in IR-24 rats is regulated mainly by intrinsic apoptotic pathway, 48 h followed ischemia extrinsic apoptotic pathway is responsible for pro-apoptotic effects of IR injury.


Assuntos
Apoptose/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Animais , Western Blotting , Proliferação de Células , Mucosa Intestinal/metabolismo , Intestinos/fisiopatologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
13.
Am J Physiol Endocrinol Metab ; 318(6): E878-E880, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421367

RESUMO

The viral pandemic of the coronavirus disease 2019 (COVID-19), generated by a novel mutated severe acute respiratory syndrome coronavirus (SARS-CoV-2), has become a serious worldwide public health emergency, evolving exponentially. While the main organ targeted in this disease is the lungs, other vital organs, such as the heart and kidney, may be implicated. The main host receptor of the SARS-CoV-2 is angiotensin converting enzyme 2 (ACE2), a major component of the renin-angiotensin-aldosterone system (RAAS). The ACE2 is also involved in testicular male regulation of steroidogenesis and spermatogenesis. As the SARS-CoV-2 may have the potential to infect the testis via ACE2 and adversely affect male reproductive system, it is essential to commence with targeted studies to learn from the current pandemic, with the possibility of preemptive intervention, depending on the findings and time course of the continuing pandemic.


Assuntos
Infecções por Coronavirus/complicações , Infertilidade Masculina/virologia , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/complicações , Enzima de Conversão de Angiotensina 2 , Betacoronavirus , COVID-19 , Humanos , Masculino , Pandemias , Receptores Virais/fisiologia , Sistema Renina-Angiotensina , SARS-CoV-2 , Espermatogênese , Testículo/fisiopatologia , Testículo/virologia
15.
Nephrol Dial Transplant ; 35(2): 206-212, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768198

RESUMO

Concepts regarding hypoxic acute kidney injury (AKI) are derived from widely used warm ischemia-reflow (WIR) models, characterized by extensive proximal tubular injury and associated with profound inflammation. However, there is ample clinical and experimental data indicating that hypoxic AKI may develop without total cessation of renal blood flow, with a different injury pattern that principally affects medullary thick limbs in the outer medulla. This injury pattern likely reflects an imbalance between blood and oxygen supply and oxygen expenditure, principally for tubular transport. Experimental models of hypoxic AKI other than WIR are based on mismatched oxygen delivery and consumption, particularly within the physiologically hypoxic outer medulla. However, evidence for such circumstances in human AKI is lacking. Recent analysis of the clinical course and laboratory findings of patients following near-drowning (ND) provides a rare glimpse into such a scenario. This observation supports the role of renal hypoxia in the evolution of AKI, as renal impairment could be predicted by the degree of whole-body hypoxia (reflected by lactic acidosis). Furthermore, there was a close association of renal functional impairment with indices of reduced oxygen delivery (respiratory failure and features of intense sympathetic activity) and of enhanced oxygen consumption for active tubular transport (extrapolated from the calculated volume of consumed hypertonic seawater). This unique study in humans supports the concept of renal oxygenation imbalance in hypoxic AKI. The drowning scenario, particularly in seawater, may serve as an archetype of this disorder, resulting from reduced oxygen delivery, combined with intensified oxygen consumption for tubular transport.


Assuntos
Injúria Renal Aguda/etiologia , Hipóxia/complicações , Oxigênio/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Humanos , Consumo de Oxigênio , Circulação Renal
16.
Adv Exp Med Biol ; 1221: 685-702, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274732

RESUMO

Recent years have brought about fledgling realization of the role played by heparanase in the pathogenesis of diverse diseases including kidney diseases and, specifically, acute kidney injury. Human heparanase-1 is critically and uniquely engaged in cleavage of heparan sulfate, an integral part of glycocalyx and extracellular matrix where it harbors distinct growth factors, cytokines, and other biologically active molecules. The enzyme is induced and activated in acute kidney injury regardless of its causes, ischemic, nephrotoxic, septic or transplantation-related. This event unleashes a host of sequelae characteristic of the pathogenesis of acute kidney injury, such as induction and reinforcement of innate immune responses, predisposition to thrombosis, activation of monocytes/macrophages and remodeling of the extracellular matrix, thus setting up the stage for future fibrotic complications and development of chronic kidney disease. We briefly discuss the emerging therapeutic strategies of inhibiting heparanase, as well as the diagnostic value of detecting products of heparanase activity for prognostication and treatment.


Assuntos
Injúria Renal Aguda/enzimologia , Glucuronidase/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Citocinas , Glucuronidase/antagonistas & inibidores , Heparitina Sulfato , Humanos
17.
Adv Exp Med Biol ; 1221: 703-719, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274733

RESUMO

Acute pancreatitis (AP) is one of the most common diseases in gastroenterology, affecting 2% of all hospitalized patients. Nevertheless, neither the etiology nor the pathophysiology of the disease is fully characterized, and no specific or effective treatment has been developed. Heparanase (Hpa) is an endoglycosidase that cleaves heparan sulfate (HS) side chains of heparan sulfate proteoglycans (HSPGs) into shorter oligosaccharides, activity that is highly implicated in cell invasion associated with cancer metastasis and inflammation. Given that AP is a typical inflammatory disease, we investigated whether Hpa plays a role in AP. Our results provide keen evidence that Hpa expression and activity are significantly increased following cerulein-induced AP in wild type mice. In parallel to the classic manifestations of AP, namely elevation of amylase and lipase levels, pancreas edema and inflammation as well as induction of cytokines and signaling molecules, have been detected in this experimental model of the disease. Noteworthy, these features were far more profound in transgenic mice overexpressing heparanase (Hpa-Tg), suggesting that these mice can be utilized as a model system to reveal the molecular mechanism by which Hpa functions in AP. Further support for the involvement of Hpa in the pathogenesis of AP emerged from our observation that treatment of experimental AP with PG545 or SST0001(= Ronepastat), two potent Hpa inhibitors, markedly attenuated the biochemical, histological and immunological manifestations of the disease. Hpa, therefore, emerges as a potential new target in AP, and Hpa inhibitors are hoped to prove beneficial in AP along with their promising efficacy as anti-cancer compounds.


Assuntos
Glucuronidase/metabolismo , Pancreatite/enzimologia , Doença Aguda , Animais , Ceruletídeo , Modelos Animais de Doenças , Glucuronidase/antagonistas & inibidores , Humanos , Pancreatite/tratamento farmacológico
18.
Ren Fail ; 42(1): 836-844, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32787602

RESUMO

BACKGROUND: Inhibitors of sodium-glucose co-transporter-2 (SGLT2i) were found to improve renal outcome in diabetic patients in large prospective randomized trials. Yet, SGLT2i may acutely reduce kidney function through volume depletion, altered glomerular hemodynamics or intensified medullary hypoxia leading to acute tubular injury (ATI). The aim or this study was to prospectively assess the pathophysiology of acute kidney injury (AKI) in patients hospitalized while on SGLT2i, differing ATI from pre-renal causes using renal biomarkers. METHODS: Serum and urine Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Kidney Ischemia Molecule (KIM)-1, markers of distal and proximal tubular injury, respectively, were determined in 46 diabetic patients who were on SGLT2i upon hospitalization with an acute illness. RESULTS: Serum and urine NGAL, but not KIM-1, were significantly increased in 21 of the patients who presented with AKI upon admission, as compared with 25 patients that maintained kidney function. Both serum and urinary NGAL correlated with the degree of impaired renal function, which in many cases was likely the result of additional acute renal perturbations, such as sepsis. CONCLUSIONS: Increased urinary and serum NGAL indicates that ATI, principally affecting distal tubular segments, may develop in some of the patients hospitalized with an acute illness and AKI while on SGLT2i. It is suggested that intensified medullary hypoxia by SGLT2i might be detrimental in this injury. By contrast, concomitantly unaltered KIM-1 might reflect improved cortical oxygenation by SGLT2i, and may explain an overall reduced risk of AKI with SGLT1i in large series. The independent potential of SGLT2i to inflict medullary hypoxic damage should be explored further.


Assuntos
Injúria Renal Aguda/diagnóstico , Diabetes Mellitus Tipo 2/complicações , Receptor Celular 1 do Vírus da Hepatite A/análise , Lipocalina-2/análise , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Injúria Renal Aguda/sangue , Injúria Renal Aguda/urina , Idoso , Biomarcadores/sangue , Biomarcadores/urina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
19.
J Cell Mol Med ; 23(7): 4779-4794, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087547

RESUMO

The thiazolidinedione (TZD) class of Peroxisome proliferator-activated receptor gamma agonists has restricted clinical use for diabetes mellitus due to fluid retention and potential cardiovascular risks. These side effects are attributed in part to direct salt-retaining effect of TZDs at the renal collecting duct. A recent study from our group revealed that prolonged rosiglitazone (RGZ) treatment caused no Na+/H2 O retention or up-regulation of Na+ transport-linked channels/transporters in experimental congestive heart failure (CHF) induced by surgical aorto-caval fistula (ACF). The present study examines the effects of RGZ on renal and cardiac responses to atrial natriuretic peptide (ANP), Acetylcholine (Ach) and S-Nitroso-N-acetylpenicillamine (SNAP-NO donor). Furthermore, we assessed the impact of RGZ on gene expression related to the ANP signalling pathway in animals with ACF. Rats subjected to ACF (or sham) were treated with either RGZ (30 mg/kg/day) or vehicle for 4 weeks. Cardiac chambers pressures and volumes were assessed invasively via Miller catheter. Kidney excretory and renal hemodynamic in response to ANP, Ach and SNAP were examined. Renal clearance along with cyclic guanosine monophosphate (cGMP), gene expression of renal CHF-related genes and ANP signalling in the kidney were determined. RGZ-treated CHF rats exhibited significant improvement in the natriuretic responses to ANP infusion. This 'sensitization' to ANP was not associated with increases in neither urinary cGMP nor in vitro cGMP production. However, RGZ caused down-regulation of several genes in the renal cortex (Ace, Nos3 and Npr1) and up-regulation of ACE2, Agtrla, Mme and Cftr along down-regulation of Avpr2, Npr1,2, Nos3 and Pde3 in the medulla. In conclusion, CHF+RGZ rats exhibited significant enhancement in the natriuretic responses to ANP infusion, which are known to be blunted in CHF. This 'sensitization' to ANP is independent of cGMP signalling, yet may involve post-cGMP signalling target genes such as ACE2, CFTR and V2 receptor. The possibility that TZD treatment in uncomplicated CHF may be less detrimental than thought before deserves additional investigations.


Assuntos
Fator Natriurético Atrial/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Rim/patologia , Rosiglitazona/uso terapêutico , Acetilcolina/farmacologia , Animais , Fator Natriurético Atrial/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , GMP Cíclico/metabolismo , Endotélio/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/patologia , Hemodinâmica/efeitos dos fármacos , Rim/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Rosiglitazona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
20.
J Card Fail ; 25(6): 468-478, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30880249

RESUMO

BACKGROUND: Congestive heart failure (CHF) entails a complex interaction between the heart and the kidney that represents a clinical entity called cardiorenal syndrome (CRS). One of the mechanisms underlying CRS includes increased intra-abdominal pressure (IAP). We examined the effect of elevated IAP on kidney function in rats with low- and high-output CHF. METHODS AND RESULTS: Rats with compensated and decompensated CHF induced by means of aortocaval fistula, rats with myocardial infraction (MI) induced by means of left anterior descending artery ligation, and sham control rats were subjected to either 10 or 14 mm Hg IAP. Urine flow (V), Na+ excretion (UNaV), glomerular filtration rate (GFR), and renal plasma flow (RPF) were determined. The effects of pretreatment with tadalafil (10 mg/kg orally for 4 days) on the adverse renal effects of IAP were examined in decompensated CHF and MI. Basal V and GFR were significantly lower in rats with decompensated CHF compared with sham control rats. Decompensated CHF rats and MI rats subjected to 10 and 14 mm Hg IAP exhibited more significant declines in V, UNaV, GFR and RPF than compensated and sham controls. Elevated IAP also induced tubular injury, as evidenced by significantly increased absolute urinary excretion of neutrophil gelatinase-associated lipocalin. In addition, in a nonquantitative histologic analysis, elevated IAP was associated with increase in necrosis and cell shedding to the tubule lumens, especially in the decompensated CHF subgroup. Pretreatment of decompensated CHF rats and MI rats with tadalafil ameliorated the adverse renal effects of high IAP. CONCLUSIONS: Elevated IAP contributes to kidney dysfunction in high- and low-cardiac output CHF. IAP induces both hemodynamic alterations and renal tubular dysfunction. These deleterious effects are potentially reversible and can be ameliorated with the use of phosphodiesterase-5 inhibition.


Assuntos
Injúria Renal Aguda/patologia , Injúria Renal Aguda/urina , Modelos Animais de Doenças , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/urina , Cavidade Abdominal/patologia , Injúria Renal Aguda/etiologia , Animais , Insuficiência Cardíaca/etiologia , Lipocalina-2/urina , Pressão/efeitos adversos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa