Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 435(1): 113904, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163564

RESUMO

Lung cancer is the leading cause of mortality worldwide of which non-small cell lung carcinoma constitutes majority of the cases. High mortality is attributed to early metastasis, late diagnosis, ineffective treatment and tumor relapse. Chemotherapy and radiotherapy form the mainstay of its treatment. However, their associated side effects involving kidneys, nervous system, gastrointestinal tract, and liver further adds to dismal outcome. These disadvantages of conventional treatment can be circumvented by use of engineered nanoparticles for improved effectiveness with minimal side effects. In this study we have synthesized silver gold nanocomposite (Ag-Au NC) using polyethylene glycol and l-ascorbic acid as surfactant and reducing agent respectively. Synthesized nanocomposite was characterized by ultraviolet-visible absorption, dynamic light scattering, scanning and transmission electron microscopy. Compositional analysis was carried out by energy dispersive X-ray analysis and average pore diameter was estimated using Barrett-Joyner-Halenda method. In-silico molecular docking analysis of the synthesized NC against active regions of epidermal growth factor receptor revealed good binding energy. Subsequently, we investigated the effect of NC on growth and stem cell attributes of A549 lung cancer cells. Results showed that NC was effective in inhibiting A549 cell proliferation, induced DNA damage, G2/M phase arrest and apoptosis. Further, tumor cell migration and spheroid formation were also negatively affected. NC also enhanced reactive oxygen species generation and mitochondrial depolarization. In addition, the effect of NC on putative cancer stem cells in A549 cells was evaluated. We found that Ag-Au NC at IC50 targeted CD44, CD24, CD166, CD133 and CD326 positive cancer stem cells and induced apoptosis. CD166 positive cells were relatively resistance to apoptosis. Together our results demonstrate the anticancer efficacy of Ag-Au NC mediated by a mechanism involving cell cycle arrest and mitochondrial derangement.


Assuntos
Neoplasias Pulmonares , Nanopartículas Metálicas , Nanocompostos , Humanos , Neoplasias Pulmonares/patologia , Ácido Ascórbico/farmacologia , Simulação de Acoplamento Molecular , Apoptose , Pulmão/metabolismo , Nanocompostos/química , Células-Tronco Neoplásicas/metabolismo , Nanopartículas Metálicas/química , Linhagem Celular Tumoral
2.
J Asian Nat Prod Res ; 17(7): 733-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25559395

RESUMO

Phytochemical investigation of the endophytic fungus Microdiplodia sp. afforded a new m-anisaldehyde derivative named microdiplanol (1) and a new 24-methylcholestanol derivative named microdiplane (2). Their structures were confirmed by a comprehensive analysis of 1D and 2D NMR and mass spectrometric data.


Assuntos
Ascomicetos/química , Benzaldeídos/isolamento & purificação , Colestanóis/isolamento & purificação , Benzaldeídos/química , Colestanóis/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Espanha
3.
4.
ACS Omega ; 8(25): 23226, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396278

RESUMO

[This retracts the article DOI: 10.1021/acsomega.9b02776.].

5.
ACS Omega ; 6(44): 29380-29393, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778611

RESUMO

The physicochemical approaches and biological principles in bio-nanotechnology favor specially functionalized nanosized particles. Cuprous oxide nanoparticles (ß-Cu2O NPs) of cuprite phase with a little tenorite (CuO) may be very effective in the development of novel therapeutic approaches against several fatalities including A-549 lung carcinoma cell lines. Consequently, the synthesis of ß-Cu2O NPs for the improvement in the therapeutic index and drug delivery application is becoming an effective strategy in conventional anticarcinoma treatment. Hence, surface-enhanced nanosized spherical cuprous oxide nanoparticles (ß-Cu2O NPs) of cuprite phase were successfully prepared using poly(ethylene glycol) (PEG) as an amphiphilic nonionic surfactant and l-ascorbic acid (K3[Cu(Cl5)]@LAA-PEG) reduced to cuprites ß-Cu2O NPs via the sonochemical route. Less improved toxicity and better solubility of ß-Cu2O NPs compared with Axitinib were a major reason for producing ß-Cu2O NPs from K3[Cu(Cl5)]@LAA-PEG (LAA, l-ascorbic acid, PEG, poly(ethylene glycol) (PEG)). These nanoparticle syntheses have been suggested to influence their cytotoxicity, free-radical scavenging analysis, and reactive oxygen species (ROS) using poly(ethylene glycol) (PEG) and l-ascorbic acid (LAA) as coated and grafted materials due to their dose-dependent nature and IC50 calculations. The surface morphology of the formed ß-Cu2O NPs has been examined via UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy diffraction scattering spectroscopy (SEM@EDS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) analysis. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) surface analysis results confirm the presence of pure cuprite with a very little amount of tenorite (CuO) phase, Dynamic light scattering (DLS) confirms the negative ζ-value with stable nature. Docking was performed using PDB of lung carcinomas and others, as rigid receptors, whereas the ß-Cu2O NP cluster was treated as a flexible ligand.

6.
ACS Omega ; 4(26): 21839-21847, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31891061

RESUMO

Palladium nanoparticles (Pd NPs) of different shapes and sizes have been synthesized by reducing potassium tetrachloropalladinate(II) by l-ascorbic acid (AA) in an aqueous solution phase in the presence of an amphiphilic nonionic surfactant poly ethylene glycol (PEG) via a sonochemical method. Materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray soectrscopy (EDX), Fourier transform infrared (FTIR), surface-enhanced Raman spectroscopy (SERS), particle distribution, and zeta potential studies. Truncated octahedron/fivefold twinned pentagonal rods are formed at room temperature (RT) (25 °C) while hexagonal/trigonal plates are formed at 65 °C. XRD results show evolution of anisotropically grown, phase-pure, and well crystalline face-centered cubic Pd NPs at both temperatures. FTIR and SERS studies revealed adsorption of ascorbic acid (AA) and PEG at NP's surface. Particle's size distribution graph indicates formation of particles having wide size distribution while the zeta potential particle surface is negatively charged and stable. The truncated octahedron/fivefold twinned pentagonal rod-shaped Pd NPs, formed at RT, while thermally stable and kinetically controlled hexagonal/trigonal plate-like Pd NPs, evolved at higher temperature 65 °C. The obtained Pd NPs have a high surface area and narrow pore size distribution. To predict protein reactivity of the Pd cluster, docking has been done with DNA and lung cancer-effective proteins. The cytotoxicity of the Pd NPs has been screened on human lung cancer cells A-549 at 37 °C. The biological adaptability exhibited by Pd NPs has opened a pathway in biochemical applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa