Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Blood Cells Mol Dis ; 66: 37-46, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28822917

RESUMO

Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic disorders related to hematopoietic stem and progenitor cell dysfunction. Several studies have shown the role of the bone marrow microenvironment in regulating hematopoietic stem, and progenitor function and their individual abnormalities have been associated with disease pathogenesis. In this study, we simultaneously evaluated hematopoietic stem cells (HSC), hematopoietic stem progenitor cells (HSPCs) and different stromal elements in a cohort of patients with MDS-refractory cytopenia with multilineage dysplasia (RCMD). Karyotyping of these patients revealed variable chromosomal abnormalities in 73.33% of patients. Long-term HSC and lineage-negative CD34+CD38- cells were reduced while among the HPCs, there was an expansion of common myeloid progenitor and loss of granulocyte-monocyte progenitors. Interestingly, loss of HSCs was accompanied by aberrant frequencies of endothelial (ECs) (CD31+CD45-CD71-) and mesenchymal stem cells (MSCs) (CD31-CD45-71-) and its subsets associated with HSC niche. We further demonstrate down-regulation of HSC maintenance genes such as Cxcl12, VEGF in mesenchymal cells and a parallel upregulation in endothelial cells. Altogether we report for the first time quantitative and qualitative de novo changes in hematopoietic stem and its associated niche in a cohort of MDS-RCMD patients. These findings further reinforce the role of different components of the bone marrow microenvironment in MDS pathogenesis and emphasize the need for comprehensive simultaneous evaluation of all niche elements in such studies.


Assuntos
Células-Tronco Hematopoéticas/patologia , Síndromes Mielodisplásicas/patologia , Nicho de Células-Tronco , Medula Óssea/patologia , Linhagem da Célula , Aberrações Cromossômicas , Células Endoteliais/patologia , Humanos , Células-Tronco Mesenquimais/patologia , Células Progenitoras Mieloides/patologia , Células Estromais/patologia
2.
Blood Cancer J ; 13(1): 171, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012156

RESUMO

SRSF2 mutations are found in association with JAK2V617F in myeloproliferative neoplasms (MPN), most frequently in myelofibrosis (MF). However, the contribution of SRSF2 mutation in JAK2V617F-driven MPN remains elusive. To investigate the consequences of SRSF2P95H and JAK2V617F mutations in MPN, we generated Cre-inducible Srsf2P95H/+Jak2V617F/+ knock-in mice. We show that co-expression of Srsf2P95H mutant reduced red blood cell, neutrophil, and platelet counts, attenuated splenomegaly but did not induce bone marrow fibrosis in Jak2V617F/+ mice. Furthermore, co-expression of Srsf2P95H diminished the competitiveness of Jak2V617F mutant hematopoietic stem/progenitor cells. We found that Srsf2P95H mutant reduced the TGF-ß levels but increased the expression of S100A8 and S100A9 in Jak2V617F/+ mice. Furthermore, enforced expression of S100A9 in Jak2V617F/+ mice bone marrow significantly reduced the red blood cell, hemoglobin, and hematocrit levels. Overall, these data suggest that concurrent expression of Srsf2P95H and Jak2V617F mutants reduces erythropoiesis but does not promote the development of bone marrow fibrosis in mice.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Policitemia , Fatores de Processamento de Serina-Arginina , Animais , Camundongos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação , Transtornos Mieloproliferativos/genética , Mielofibrose Primária , Fatores de Processamento de Serina-Arginina/genética
3.
Nat Commun ; 12(1): 6207, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707113

RESUMO

Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD+; meanwhile, restoring NAD+ levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN (Crassostrea virginica and Nematostella vectensis), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.


Assuntos
Dano ao DNA , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/metabolismo , Fosforilação , Poli ADP Ribosilação , Proteínas Serina-Treonina Quinases/metabolismo , Reparo de DNA por Recombinação , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo
4.
Indian J Hematol Blood Transfus ; 35(2): 223-232, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30988556

RESUMO

Bone marrow niche constituents have been implicated in the genesis of clonal hematopoietic dysfunction in myelodysplastic syndromes (MDS), though the exact role of stroma in the pathogenesis of MDS remains to be defined. We have evaluated the characteristics of mesenchymal stromal cells in a cohort of patients with MDS with multilineage dysplasia (MDS-MLD). MSCs were cultured from bone marrow aspirates of MDS-MLD patients and controls with healthy bone marrow. Phenotypic characterization, cell cycle, and apoptosis were analyzed by flow cytometry. Targeted gene expression analysis was done using a reverse-transcription polymerase chain reaction (Q-PCR). MSCs derived from MDS patients (MDS-MSCs) showed normal morphology, phenotype, karyotype and differentiation potential towards adipogenic and osteogenic lineages. However, these MDS-MSCs showed significantly altered cell cycle status and displayed a shift towards increased apoptosis compared to control MSCs (C-MSCs). The gene expression profile of niche responsive/regulatory cytokines showed a trend towards lower expression VEGF, SCF, and ANGPT with no changes in expression of CXCL12A and LIF compared to C-MSCs. The expression levels of Notch signaling components like Notch ligands (JAGGED-1 and DELTA-LIKE-1), receptors (NOTCH1, NOTCH3) and downstream gene (HES1) showed an aberrant expression pattern in MDS-MSCs compared to C-MSCs. Similarly, Q-PCR analysis of Wnt signaling inhibitory ligands (DKK-1 and DKK-2) in MDS-MSCs showed a three-fold increase in mRNA expression of DKK1 and a two-fold increase in DKK2 compared to C-MSCs. These data suggested that MDS-MSCs have an altered proliferation characteristic as well as a dysregulated cytokine secretion and signaling profile. These changes could contribute to the pathogenesis of MDS.

5.
Cell Reprogram ; 19(6): 372-383, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29035086

RESUMO

Although neural stem cells (NSCs) have potential applications in treating neurological disorders, much still needs to be understood about the differentiation biology for their successful clinical translation. In this study, we aimed at deriving NSCs from human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) and explored the role of Notch signaling in the differentiation process. The hUCB-MSCs were characterized as per guidelines of the International Society of Cellular Therapy. NSCs were successfully generated from hUCB-MSCs by using epidermal and fibroblast growth factors under serum-free conditions. The expression of NSC markers (Nestin and Musashi-1) in the neurospheres generated from hUCB-MSCs in the presence or absence of N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT; Notch inhibitor) was immuno-phenotypically characterized by using immunofluorescence. DAPT showed significant (*p < 0.05) downregulated expression of the NSC markers-Nestin and SOX2-at different time points (6 hours, 12 hours, 24 hours, 36 hours, and 5 days) post-treatment. In addition, Mushashi-1 (NSC marker) expression in NSCs was also inhibited after DAPT treatment, which signifies that the process is Notch dependent. These data were further correlated with formation of a reduced average number of neurospheres derived from hUCB-MSCs (2 colonies vs. 11 colonies/field of view) in the presence of DAPT compared with the control (without DAPT). The expression of Notch target genes in NSC cultures (Notch intracellular domain [NICD], HES1, and HES5) was also significantly downregulated after DAPT treatment. In the presence of DAPT, the markers for neuronal (MAP2, NEFH); and glial (GFAP, GLUL, and MBP) lineages were significantly downregulated as seen via immunofluorescence and quantitative polymerase chain reaction, indicating the role of Notch in the tri-differentiation mechanism of NSCs as well. In addition, Notch signaling inhibition induced higher cell death during the lineage commitment of NSCs as measured 3 days (16.9% vs. 8.9%) and 6 days (42.9% vs. 20.8%) postinduction. These results suggest that the efficient derivation of NSCs and their subsequent lineage commitment from hUCB-MSCs requires the Notch signaling pathway.


Assuntos
Autorrenovação Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Sangue Fetal/citologia , Células-Tronco Neurais/citologia , Receptores Notch/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sangue Fetal/efeitos dos fármacos , Sangue Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos
6.
Colloids Surf B Biointerfaces ; 152: 133-142, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103530

RESUMO

Development of safe non-viral carrier systems for efficient intra-cellular delivery of drugs and genes hold promise in the area of translational research. Liposome based delivery systems have emerged as one of the attractive strategies for efficient delivery of drugs and nucleic acids. To this end, number of investigations was carried on liposomal formulations using lipids for achieving higher efficiency in transfection with lower cytotoxicities. In our efforts to develop safer and efficient liposomal delivery systems, we synthesized a novel anti-oxidant lipid, α-lipoyl, oleyl-sn-phosphatidylcholine (LOPC) and used as a helper lipid in combination with a cationic amphiphile, Di-Stearyl Dihydroxy Ethyl Ammonium Chloride (DSDEAC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at varying concentrations of LOPC. DNA binding properties of the liposomal formulations (DS, DS LA1, DS LA2 and DS LA3) revealed that increasing the percentage of single aliphatic chain lipid LOPC, did not affect the DNA binding properties. But, transfection profiles of these liposomal formulations in 3 different cell lines (HeLa, HEK 293 and MCF7) showed difference in their efficacies. Results showed that optimal percentage of LOPC i.e. 25% in DSDEAC and DOPC at 1:1 molar ratio (DS LA1) enhanced transfection as compared to DSDEAC:DOPC alone. The endosomal escape studies with NBD labelled lysotracker and Rhodamine labelled liposomal formulations revealed that DS LA1 and DS LA2 facilitated the release of genetic cargo with a better efficiency than their counter parts. Reactive Oxygen Species (ROS), a key modulator of necroptosis were lowered with the treatment of DS LA1 than other liposomal formulations. Here in, we present a novel liposomal formulation using DSDEAC and DOPC at 1:1 molar ratio doped with 25-50% (mole ratio) LOPC as an efficient delivery system for enhanced transfection with quenching of ROS levels compared to formulations without LOPC.


Assuntos
Antioxidantes/química , Lipossomos/química , Fosfatidilcolinas/química , Ácido Tióctico/química , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Transfecção
7.
Inflamm Bowel Dis ; 21(11): 2549-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26197452

RESUMO

BACKGROUND: Primary colonic epithelial defects leading to inflammatory responses are considered central to the development of ulcerative colitis (UC). However, a systematic analysis of various colonic subcompartments in the pathogenesis of UC before inflammation remains elusive. Here, we explored changes in colonic subcompartments and their associated niche signals in patient mucosal biopsies and in an animal model of colitis. METHODS: Analysis of mucosal biopsies obtained from uninvolved and involved regions of patients with UC and Crohn's disease was performed and compared with normal subjects. Temporal analysis of colonic subcompartments was performed in mice administered with 5% dextran sodium sulphate. Phenotypic enumeration of the crypt subcompartment was complemented with flow cytometric analysis. Members of Notch and Wnt signaling pathways were analyzed by molecular, biochemical, and colocalization studies. RESULTS: Phenotypic enumeration of colonocytes' subcompartments from patients revealed significant alterations of the lower crypt, enriched in stem cell and progenitors, independent of inflammation. These changes, unique to UC, were confirmed by immunohistochemistry and molecular analysis. In parallel, a defect in proliferation and Muc2 synthesis was observed. Animal data before inflammation recapitulated human studies. Mechanistic studies revealed that changes in signaling through Wnt primarily affected colonic stem cells, whereas Notch affected progenitor function. CONCLUSIONS: Our results thus provide new insights into the development of inflammation and relapse in UC and suggest that the stem cell niche in the colon may influence pathogenesis of the disease.


Assuntos
Colite Ulcerativa/patologia , Doença de Crohn/patologia , Sulfato de Dextrana/administração & dosagem , Mucosa Intestinal/patologia , Mucina-2/metabolismo , Adolescente , Adulto , Idoso , Animais , Biópsia , Colite Ulcerativa/induzido quimicamente , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transdução de Sinais , Adulto Jovem
8.
Pharmacogenomics ; 13(3): 269-82, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22304580

RESUMO

AIM: Cytidine deaminase (CDA) irreversibly deaminates cytarabine (Ara-C), a key component of acute myeloid leukemia (AML) induction and consolidation therapy. CDA overexpression results in Ara-C resistance, while decreased expression is associated with toxicity. We evaluated factors influencing variation in CDA mRNA expression in adult AML patients and normal controls, and how they contributed to Ara-C cytotoxicity in AML cells. MATERIALS & METHODS: CDA mRNA expression in 100 de novo AML patients and 36 normal controls were determined using quantitative reverse-transcriptase PCR. Genetic variants in the CDA gene were screened by direct sequencing. IC50 of Ara-C was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS: CDA RNA expression as well as Ara-C IC50 showed wide variation in AML samples and normal controls. Fourteen sequence variants were identified, three of which (-33delC, intron 2 TCAT repeat and the 3´untranslated region 816delC variants) showed significant association with RNA expression and the nonsynonymous coding variant 79A>C was associated with Ara-C cytotoxicity. CONCLUSION: CDA genetic variants explain the variation in RNA expression and may be candidates for individualizing Ara-C therapy.


Assuntos
Citarabina/uso terapêutico , Citidina Desaminase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Adolescente , Adulto , Idoso , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Haplótipos , Humanos , Íntrons , Leucemia Mieloide Aguda/enzimologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Células U937 , Adulto Jovem
9.
Cytotechnology ; 62(5): 389-402, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20835846

RESUMO

Adipose tissue is an easily accessible and abundant source of stem cells. Adipose stem cells (ASCs) are currently being researched as treatment options for repair and regeneration of damaged tissues. The standard culture conditions used for expansion of ASCs contain fetal bovine serum (FBS) which is undefined, could transmit known and unknown adventitious agents, and may cause adverse immune reactions. We have described a novel culture condition which excludes the use of FBS and characterised the resulting culture. Human ASCs were cultured in the novel culture medium, which included complement protein C3. These cultures, called C-ASCs, were compared with ASCs cultured in medium supplemented with FBS. Analysis of ASCs for surface marker profile, proliferation characteristics and differentiation potential indicated that the C-ASCs were similar to ASCs cultured in medium containing FBS. Using a specific inhibitor, we show that C3 is required for the survival of C-ASCs. This novel composition lends itself to being developed into a defined condition for the routine culture of ASCs for basic and clinical applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa