Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(50)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666238

RESUMO

We investigated the structural evolution of electrochemically fabricated Pd nanowiresin situby means of grazing-incidence transmission small- and wide-angle x-ray scattering (GTSAXS and GTWAXS), x-ray fluorescence (XRF) and two-dimensional surface optical reflectance (2D-SOR). This shows how electrodeposition and the hydrogen evolution reaction (HER) compete and interact during Pd electrodepositon. During the bottom-up growth of the nanowires, we show thatß-phase Pd hydride is formed. Suspending the electrodeposition then leads to a phase transition fromß-phase Pd hydride toα-phase Pd. Additionally, we find that grain coalescence later hinders the incorporation of hydrogen in the Pd unit cell. GTSAXS and 2D-SOR provide complementary information on the volume fraction of the pores occupied by Pd, while XRF was used to monitor the amount of Pd electrodeposited.

2.
J Appl Crystallogr ; 56(Pt 1): 312-321, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36777142

RESUMO

This work introduces the high-energy surface X-ray diffraction analysis toolkit (HAT), an open-source cross-platform software package written in Python to allow the extraction and processing of high-energy surface X-ray diffraction (HESXRD) data sets. Thousands of large-area detector images are collected in a single HESXRD scan, corresponding to billions of pixels and hence reciprocal space positions. HAT is an optimized reciprocal space binner that implements a graphical user interface to allow the easy and interactive exploration of HESXRD data sets. Regions of reciprocal space can be selected with movable and resizable masks in multiple views and are projected onto different axes to allow the creation of reciprocal space maps and the extraction of crystal truncation rods. Current and future versions of HAT can be downloaded and used free of charge.

3.
Adv Mater ; 35(39): e2304621, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437599

RESUMO

Corrosion is the main factor limiting the lifetime of metallic materials, and a fundamental understanding of the governing mechanism and surface processes is difficult to achieve since the thin oxide films at the metal-liquid interface governing passivity are notoriously challenging to study. In this work, a combination of synchrotron-based techniques and electrochemical methods is used to investigate the passive film breakdown of a Ni-Cr-Mo alloy, which is used in many industrial applications. This alloy is found to be active toward oxygen evolution reaction (OER), and the OER onset coincides with the loss of passivity and severe metal dissolution. The OER mechanism involves the oxidation of Mo4+ sites in the oxide film to Mo6+ that can be dissolved, which results in passivity breakdown. This is fundamentally different from typical transpassive breakdown of Cr-containing alloys where Cr6+ is postulated to be dissolved at high anodic potentials, which is not observed here. At high current densities, OER also leads to acidification of the solution near the surface, further triggering metal dissolution. The OER plays an important role in the mechanism of passivity breakdown of Ni-Cr-Mo alloys due to their catalytic activity, and this effect needs to be considered when studying the corrosion of catalytically active alloys.

4.
Nanoscale Adv ; 4(11): 2452-2467, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36134135

RESUMO

A high-throughput method for the fabrication of ordered arrays of Au nanoparticles is presented. It is based on pulsed electrodeposition into porous anodic alumina templates. In contrast to many synthesis routes, it is cyanide-free, prior separation of the alumina template from the aluminium substrate is not required, and the use of contaminating surfactants/capping agents often found in colloidal synthesis is avoided. The aspect ratio of the nanoparticles can also be tuned by selecting an appropriate electrodeposition time. We show how to fabricate arrays of nanoparticles, both with branched bases and with hemispherical bases. Furthermore, we compare the different morphologies produced with electron microscopies and grazing-incidence synchrotron X-ray diffraction. We find the nanoparticles are polycrystalline in nature and are compressively strained perpendicular to the direction of growth, and expansively strained along the direction of growth. We discuss how this can produce dislocations and twinning defects that could be beneficial for catalysis.

5.
J Appl Crystallogr ; 54(Pt 4): 1140-1152, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34429722

RESUMO

X-ray diffractometers primarily designed for surface X-ray diffraction are often used to measure the diffraction from powders, textured materials and fiber-texture samples in 2θ scans. Unlike in high-energy powder diffraction, only a fraction of the powder rings is typically measured, and the data consist of many detector images across the 2θ range. Such diffractometers typically scan in directions not possible on a conventional laboratory diffractometer, which gives enhanced control of the scattering vector relative to the sample orientation. There are, however, very few examples where the measured intensity is directly used, such as for profile/Rietveld refinement, as is common with other powder diffraction data. Although the underlying physics is known, converting the data is time consuming and the appropriate corrections are dispersed across several publications, often not with powder diffraction in mind. This paper presents the angle calculations and correction factors required to calculate meaningful intensities for 2θ scans with a (2 + 3)-type diffractometer and an area detector. Some of the limitations with respect to texture, refraction and instrumental resolution are also discussed, as is the kind of information that one can hope to obtain.

6.
ACS Appl Mater Interfaces ; 13(16): 19530-19540, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870682

RESUMO

We have developed a microscope with a spatial resolution of 5 µm, which can be used to image the two-dimensional surface optical reflectance (2D-SOR) of polycrystalline samples in operando conditions. Within the field of surface science, operando tools that give information about the surface structure or chemistry of a sample under realistic experimental conditions have proven to be very valuable to understand the intrinsic reaction mechanisms in thermal catalysis, electrocatalysis, and corrosion science. To study heterogeneous surfaces in situ, the experimental technique must both have spatial resolution and be able to probe through gas or electrolyte. Traditional electron-based surface science techniques are difficult to use under high gas pressure conditions or in an electrolyte due to the short mean free path of electrons. Since it uses visible light, SOR can easily be used under high gas pressure conditions and in the presence of an electrolyte. In this work, we use SOR in combination with a light microscope to gain information about the surface under realistic experimental conditions. We demonstrate this by studying the different grains of three polycrystalline samples: Pd during CO oxidation, Au in electrocatalysis, and duplex stainless steel in corrosion. Optical light-based techniques such as SOR could prove to be a good alternative or addition to more complicated techniques in improving our understanding of complex polycrystalline surfaces with operando measurements.

7.
ISME J ; 14(4): 896-905, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31896790

RESUMO

Filamentous fungi play a key role as decomposers in Earth's nutrient cycles. In soils, substrates are heterogeneously distributed in microenvironments. Hence, individual hyphae of a mycelium may experience very different environmental conditions simultaneously. In the current work, we investigated how fungi cope with local environmental variations at single-cell level. We developed a method based on infrared spectroscopy that allows the direct, in-situ chemical imaging of the decomposition activity of individual hyphal tips. Colonies of the ectomycorrhizal Basidiomycete Paxillus involutus were grown on liquid media, while parts of colonies were allowed to colonize lignin patches. Oxidative decomposition of lignin by individual hyphae growing under different conditions was followed for a period of seven days. We identified two sub-populations of hyphal tips: one with low decomposition activity and one with much higher activity. Active cells secreted more extracellular polymeric substances and oxidized lignin more strongly. The ratio of active to inactive hyphae strongly depended on the environmental conditions in lignin patches, but was further mediated by the decomposition activity of entire mycelia. Phenotypic heterogeneity occurring between genetically identical hyphal tips may be an important strategy for filamentous fungi to cope with heterogeneous and constantly changing soil environments.


Assuntos
Fungos/fisiologia , Agaricales , Basidiomycota/fisiologia , Microbiologia Ambiental , Hifas , Micélio/fisiologia , Micorrizas/fisiologia , Nutrientes , Solo/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa