Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Neurobiol Dis ; 187: 106315, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783234

RESUMO

G protein-coupled receptor 17 (GPR17) and the WNT pathway are critical players of oligodendrocyte (OL) differentiation acting as essential timers in developing brain to achieve fully-myelinating cells. However, whether and how these two systems are related to each other is still unknown. Of interest, both factors are dysregulated in developing and adult brain diseases, including white matter injury and cancer, making the understanding of their reciprocal interactions of potential importance for identifying new targets and strategies for myelin repair. Here, by a combined pharmacological and biotechnological approach, we examined regulatory mechanisms linking WNT signaling to GPR17 expression in OLs. We first analyzed the relative expression of mRNAs encoding for GPR17 and the T cell factor/Lymphoid enhancer-binding factor-1 (TCF/LEF) transcription factors of the canonical WNT/ß-CATENIN pathway, in PDGFRα+ and O4+ OLs during mouse post-natal development. In O4+ cells, Gpr17 mRNA level peaked at post-natal day 14 and then decreased concomitantly to the physiological uprise of WNT tone, as shown by increased Lef1 mRNA level. The link between WNT signaling and GPR17 expression was further reinforced in vitro in primary PDGFRα+ cells and in Oli-neu cells. High WNT tone impaired OL differentiation and drastically reduced GPR17 mRNA and protein levels. In Oli-neu cells, WNT/ß-CATENIN activation repressed Gpr17 promoter activity through both putative WNT response elements (WRE) and upregulation of the inhibitor of DNA-binding protein 2 (Id2). We conclude that the WNT pathway influences OL maturation by repressing GPR17, which could have implications in pathologies characterized by dysregulations of the OL lineage including multiple sclerosis and oligodendroglioma.


Assuntos
Células Precursoras de Oligodendrócitos , Via de Sinalização Wnt , Camundongos , Animais , beta Catenina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Diferenciação Celular/fisiologia , Oligodendroglia/metabolismo , RNA Mensageiro/metabolismo
2.
Mol Ther ; 29(4): 1439-1458, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33309882

RESUMO

Contrasting myelin damage through the generation of new myelinating oligodendrocytes represents a promising approach to promote functional recovery after stroke. Here, we asked whether activation of microglia and monocyte-derived macrophages affects the regenerative process sustained by G protein-coupled receptor 17 (GPR17)-expressing oligodendrocyte precursor cells (OPCs), a subpopulation of OPCs specifically reacting to ischemic injury. GPR17-iCreERT2:CAG-eGFP reporter mice were employed to trace the fate of GPR17-expressing OPCs, labeled by the green fluorescent protein (GFP), after permanent middle cerebral artery occlusion. By microglia/macrophages pharmacological depletion studies, we show that innate immune cells favor GFP+ OPC reaction and limit myelin damage early after injury, whereas they lose their pro-resolving capacity and acquire a dystrophic "senescent-like" phenotype at later stages. Intracerebral infusion of regenerative microglia-derived extracellular vesicles (EVs) restores protective microglia/macrophages functions, limiting their senescence during the post-stroke phase, and enhances the maturation of GFP+ OPCs at lesion borders, resulting in ameliorated neurological functionality. In vitro experiments show that EV-carried transmembrane tumor necrosis factor (tmTNF) mediates the pro-differentiating effects on OPCs, with future implications for regenerative therapies.


Assuntos
Senescência Celular/genética , Bainha de Mielina/genética , Receptores Acoplados a Proteínas G/genética , Acidente Vascular Cerebral/terapia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Diferenciação Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/terapia , Macrófagos/metabolismo , Macrófagos/transplante , Masculino , Camundongos , Microglia/metabolismo , Microglia/transplante , Oligodendroglia/transplante , Medicina Regenerativa/métodos , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Fator de Necrose Tumoral alfa/genética
3.
Cell Mol Neurobiol ; 41(1): 105-114, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32239390

RESUMO

MicroRNAs are small post-transcriptional regulators that modulate gene expression by directly interacting with their target transcripts. Since the interaction between miRNAs and target mRNAs does not require a perfect match, one single miRNA can influence the expression of several genes and lead to a very broad array of functional consequences. Recently, we identified miR-125a-3p as a new regulator of oligodendrocyte development, showing that its over-expression is associated to impaired oligodendrocyte maturation. However, whether and how miR-125a-3p over-expression is causally related to oligodendrocyte maturation is still obscure, as well as the pathways responsible for this effect. To shed light on this issue and to identify the underlying molecular mechanisms, we determined the transcriptomic profile of miR-125a-3p over-expressing oligodendrocytes and, by means of two complementary bioinformatic approaches, we have identified pathways and biological processes consistently modulated by miR-125a-3p alteration. This analysis showed that miR-125a-3p is involved in the regulation of cell-cell interactions and Wnt signaling. By means of pathway-focused PCR arrays, we confirmed that miR-125a-3p induces changes in the expression of several genes encoding for adhesion molecules and gap junctions, which play key roles in oligodendrocytes after exposure to pathological demyelinating stimuli. Moreover, the expression changes of different Wnt targets suggest an over-activation of this pathway. Globally, our studies show that miR-125a-3p over-expression can alter signaling pathways and biological processes essential for myelin formation in oligodendrocytes, suggesting that alteration of miR-125a-3p levels may contribute to impairing oligodendrocyte maturation in demyelinating diseases.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Oligodendroglia/metabolismo , Via de Sinalização Wnt/genética , Animais , Moléculas de Adesão Celular/metabolismo , Matriz Extracelular/metabolismo , Junções Comunicantes/metabolismo , Ontologia Genética , MicroRNAs/genética , Ratos Sprague-Dawley
4.
Purinergic Signal ; 17(1): 127-134, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33165707

RESUMO

The international purinergic scientific community has lost its pioneer. Geoffrey Burnstock, born on the 10th of May 1929 in London, died on the 2nd of June 2020, aged 91, in Melbourne (Australia). Geoff was one of the most highly regarded scientists of his generation. In the 1960s and 1970s, he developed a radical and somehow heretical new theory and opened an entire new field of science, signalling via extracellular nucleotides (the "purinergic theory"), which revolutionized our understanding of how cells communicate between each other. Initially, his unconventional theory found a lot of resistance in the scientific community. Once, one scientist even threatened to devote his entire life to disproving Burnstock's theory. Undeterred, Geoff went further on, and continued to accumulate evidence in favour of his hypothesis, and led the field ever since. He struggled to attract new scientists to this new field of research and, in the early 1990s, due to new molecular biology techniques making it possible to isolate and identify cell surface receptors for ATP and its breakdown product adenosine, did evidence emerge that eventually convinced the doubters. The number of spontaneous obituaries and messages honouring Geoff's memory that have appeared on specialized Journals and in the public press throughout the world since last June indicates that many people are clearly affected by his death. Besides being a rigorous, ethical and extremely brilliant scientist, Geoff was an extraordinary human being, always eager to collaborate and share data, never jealous of his findings and capable of learning things even from young people. He was known for his enthusiasm, empathy and ability to motivate young scientists and promote their careers. After the establishment of the Purine Club back in the 1990s, numerous Purine Club Chapters have been formed around the world with Geoff's help and encouragement. He has obviously also been the inspirator and founder of our Journal, Purinergic Signalling (PUSI). For this reason, Charles Kennedy, the current Editor of the Journal, and myself thought that it might be nice to invite representatives from all known Purine Clubs to send a few notes to be published in PUSI on the history of their club and how Geoff inspired, aided or supported them. Here, I have collected all their contributions and I share with the entire purinergic community my personal memories on how the Purine Club was born and developed thanks to the invaluable mentoring of Geoffrey Burnstock. I apologize in advance if I am missing some information or forgot to mention somebody, and I strongly encourage all readers to submit memories and additional information that I shall gather for future writing. Keeping alive the history of how the field developed will be the best tribute that we can play to celebrate Geoff's work along the years.


Assuntos
Receptores Purinérgicos/metabolismo , Transdução de Sinais/fisiologia , Congressos como Assunto , Humanos , Purinas/metabolismo
5.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925469

RESUMO

In multiple sclerosis (MS), oligodendrocyte precursor cells (OPCs) are recruited to the site of injury to remyelinate damaged axons; however, in patients this process is often ineffective due to defects in OPC maturation. The membrane receptor GPR17 timely regulates the early stages of OPC differentiation; however, after reaching its highest levels in immature oligodendrocytes, it has to be downregulated to allow terminal maturation. Since, in several animal models of disease GPR17 is upregulated, the aim of this work was to characterize GPR17 alterations in MS patients. We developed immunohistochemistry and immunofluorescence procedures for the detection of GPR17 in human tissues and stained post-mortem MS brain lesions from patients with secondary progressive MS and control subjects. The inflammatory activity in each lesion was evaluated by immunohistochemistry for the myelin protein MOG and the HLA antigen to classify them as active, chronic inactive or chronic active. Hence, we assessed the distribution of GPR17-positive cells in these lesions compared to normal appearing white matter (NAWM) and white matter (WM) of control subjects. Our data have shown a marked increase of GPR17-expressing oligodendroglial cells accumulating at NAWM, in which moderate inflammation was also found. Furthermore, we identified two distinct subpopulations of GPR17-expressing oligodendroglial cells, characterized by either ramified or rounded morphology, that differently populate the WM of healthy controls and MS patients. We concluded that the coordinated presence of GPR17 in OPCs at the lesion sites and inflamed NAWM areas suggests that GPR17 could be exploited to support endogenous remyelination through advanced pharmacological approaches.


Assuntos
Encefalite/metabolismo , Esclerose Múltipla/patologia , Receptores Acoplados a Proteínas G/metabolismo , Substância Branca/patologia , Adulto , Encefalite/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Substância Branca/metabolismo
6.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769111

RESUMO

Characterization of new pharmacological targets is a promising approach in research of neurorepair mechanisms. The G protein-coupled receptor 17 (GPR17) has recently been proposed as an interesting pharmacological target, e.g., in neuroregenerative processes. Using the well-established ex vivo model of organotypic slice co-cultures of the mesocortical dopaminergic system (prefrontal cortex (PFC) and substantia nigra/ventral tegmental area (SN/VTA) complex), the influence of GPR17 ligands on neurite outgrowth from SN/VTA to the PFC was investigated. The growth-promoting effects of Montelukast (MTK; GPR17- and cysteinyl-leukotriene receptor antagonist), the glial cell line-derived neurotrophic factor (GDNF) and of two potent, selective GPR17 agonists (PSB-16484 and PSB-16282) were characterized. Treatment with MTK resulted in a significant increase in mean neurite density, comparable with the effects of GDNF. The combination of MTK and GPR17 agonist PSB-16484 significantly inhibited neuronal growth. qPCR studies revealed an MTK-induced elevated mRNA-expression of genes relevant for neuronal growth. Immunofluorescence labelling showed a marked expression of GPR17 on NG2-positive glia. Western blot and RT-qPCR analysis of untreated cultures suggest a time-dependent, injury-induced stimulation of GPR17. In conclusion, MTK was identified as a stimulator of neurite fibre outgrowth, mediating its effects through GPR17, highlighting GPR17 as an interesting therapeutic target in neuronal regeneration.


Assuntos
Acetatos/farmacologia , Ciclopropanos/farmacologia , Antagonistas de Leucotrienos/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Sulfetos/farmacologia , Animais , Animais Recém-Nascidos , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos , Feminino , Masculino , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal/genética , Ratos
7.
Glia ; 68(10): 1957-1967, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32086854

RESUMO

Remyelination, namely, the formation of new myelin sheaths around denuded axons, counteracts axonal degeneration and restores neuronal function. Considerable advances have been made in understanding this regenerative process that often fails in diseases like multiple sclerosis, leaving axons demyelinated and vulnerable to damage, thus contributing to disease progression. The identification of the membrane receptor GPR17 on a subset of oligodendrocyte precursor cells (OPCs), which mediate remyelination in the adult central nervous system (CNS), has led to a huge amount of evidence that validated this receptor as a new attractive target for remyelinating therapies. Here, we summarize the role of GPR17 in OPC function, myelination and remyelination, describing its atypical pharmacology, its downstream signaling, and the genetic and epigenetic factors modulating its activity. We also highlight crucial insights into GPR17 pathophysiology coming from the demonstration that oligodendrocyte injury, associated with inflammation in chronic neurodegenerative conditions, is invariably characterized by abnormal and persistent GPR17 upregulation, which, in turn, is accompanied by a block of OPCs at immature premyelinating stages. Finally, we discuss the current literature in light of the potential exploitment of GPR17 as a therapeutic target to promote remyelination.


Assuntos
Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Remielinização/fisiologia , Transdução de Sinais/fisiologia , Animais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Epigênese Genética/fisiologia , Humanos , Bainha de Mielina/genética , Receptores Acoplados a Proteínas G/genética
8.
Glia ; 68(10): 2001-2014, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32163190

RESUMO

In the last decade, microRNAs have been increasingly recognized as key modulators of glial development. Recently, we identified miR-125a-3p as a new player in oligodendrocyte physiology, regulating in vitro differentiation of oligodendrocyte precursor cells (OPCs). Here, we show that miR-125a-3p is upregulated in active lesions of multiple sclerosis (MS) patients and in OPCs isolated from the spinal cord of chronic experimental autoimmune encephalomyelitis (EAE) mice, but not in those isolated from the spontaneously remyelinating corpus callosum of lysolecithin-treated mice. To test whether a sustained expression of miR-125a-3p in OPCs contribute to defective remyelination, we modulated miR-125a-3p expression in vivo and ex vivo after lysolecithin-induced demyelination. We found that lentiviral over-expression of miR-125a-3p impaired OPC maturation, whereas its downregulation accelerated remyelination. Transcriptome analysis and luciferase reporter assay revealed that these effects are partly mediated by the direct interaction of miR-125a-3p with Slc8a3, a sodium-calcium membrane transporter, and identified novel candidate targets, such as Gas7, that we demonstrated necessary to correctly address oligodendrocytes to terminal maturation. These findings show that miR-125a-3p upregulation negatively affects OPC maturation in vivo, suggest its role in the pathogenesis of demyelinating diseases and unveil new targets for future promyelinating protective interventions.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Inativação Gênica/fisiologia , MicroRNAs/biossíntese , Bainha de Mielina/metabolismo , Remielinização/fisiologia , Substância Branca/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Bainha de Mielina/genética , Bainha de Mielina/patologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Substância Branca/patologia
9.
Adv Exp Med Biol ; 1202: 13-33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32034707

RESUMO

Purines and pyrimidines are fundamental signaling molecules in controlling the survival and proliferation of astrocytes, as well as in mediating cell-to-cell communication between glial cells and neurons in the healthy brain. The malignant transformation of astrocytes towards progressively more aggressive brain tumours (from astrocytoma to anaplastic glioblastoma) leads to modifications in both the survival and cell death pathways which overall confer a growth advantage to malignant cells and resistance to many cytotoxic stimuli. It has been demonstrated, however, that, in astrocytomas, several purinergic (in particular adenosinergic) pathways controlling cell survival and death are still effective and, in some cases, even enhanced, providing invaluable targets for purine-based chemotherapy, that still represents an appropriate pharmacological approach to brain tumours. In this chapter, the current knowledge on both receptor-mediated and receptor-independent adenosine pathways in astrocytomas will be reviewed, with a particular emphasis on the most promising targets which could be translated from in vitro studies to in vivo pharmacology. Additionally, we have included new original data from our laboratory demonstrating a key involvement of MAP kinases in the cytostastic and cytotoxic effects exerted by an adenosine analogue, 2-CdA, which with the name of Cladribine is already clinically utilized in haematological malignancies. Here we show that 2-CdA can activate multiple intracellular pathways leading to cell cycle block and cell death by apoptosis of a human astrocytoma cell line that bears several pro-survival genetic mutations. Although in vivo data are still lacking, our results suggest that adenosine analogues could therefore be exploited to overcome resistance to chemotherapy of brain tumours.


Assuntos
Adenosina/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Transdução de Sinais , Adenosina/análogos & derivados , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Transdução de Sinais/efeitos dos fármacos
10.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244295

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons (MN). Importantly, MN degeneration is intimately linked to oligodendrocyte dysfunction and impaired capacity of oligodendrocyte precursor cells (OPCs) to regenerate the myelin sheath enwrapping and protecting neuronal axons. Thus, improving OPC reparative abilities represents an innovative approach to counteract MN loss. A pivotal regulator of OPC maturation is the P2Y-like G protein-coupled receptor 17 (GPR17), whose role in ALS has never been investigated. In other models of neurodegeneration, an abnormal increase of GPR17 has been invariably associated to myelin defects and its pharmacological manipulation succeeded in restoring endogenous remyelination. Here, we analyzed GPR17 alterations in the SOD1G93A ALS mouse model and assessed in vitro whether this receptor could be targeted to correct oligodendrocyte alterations. Western-blot and immunohistochemical analyses showed that GPR17 protein levels are significantly increased in spinal cord of ALS mice at pre-symptomatic stage; this alteration is exacerbated at late symptomatic phases. Concomitantly, mature oligodendrocytes degenerate and are not successfully replaced. Moreover, OPCs isolated from spinal cord of SOD1G93A mice display defective differentiation compared to control cells, which is rescued by treatment with the GPR17 antagonist montelukast. These data open novel therapeutic perspectives for ALS management.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Bainha de Mielina/metabolismo , Doenças Neurodegenerativas/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Medula Espinal/metabolismo , Regulação para Cima
11.
Acta Neuropathol ; 138(6): 987-1012, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31363836

RESUMO

Microglia are highly plastic immune cells which exist in a continuum of activation states. By shaping the function of oligodendrocyte precursor cells (OPCs), the brain cells which differentiate to myelin-forming cells, microglia participate in both myelin injury and remyelination during multiple sclerosis. However, the mode(s) of action of microglia in supporting or inhibiting myelin repair is still largely unclear. Here, we analysed the effects of extracellular vesicles (EVs) produced in vitro by either pro-inflammatory or pro-regenerative microglia on OPCs at demyelinated lesions caused by lysolecithin injection in the mouse corpus callosum. Immunolabelling for myelin proteins and electron microscopy showed that EVs released by pro-inflammatory microglia blocked remyelination, whereas EVs produced by microglia co-cultured with immunosuppressive mesenchymal stem cells promoted OPC recruitment and myelin repair. The molecular mechanisms responsible for the harmful and beneficial EV actions were dissected in primary OPC cultures. By exposing OPCs, cultured either alone or with astrocytes, to inflammatory EVs, we observed a blockade of OPC maturation only in the presence of astrocytes, implicating these cells in remyelination failure. Biochemical fractionation revealed that astrocytes may be converted into harmful cells by the inflammatory EV cargo, as indicated by immunohistochemical and qPCR analyses, whereas surface lipid components of EVs promote OPC migration and/or differentiation, linking EV lipids to myelin repair. Although the mechanisms through which the lipid species enhance OPC maturation still remain to be fully defined, we provide the first demonstration that vesicular sphingosine 1 phosphate stimulates OPC migration, the first fundamental step in myelin repair. From this study, microglial EVs emerge as multimodal and multitarget signalling mediators able to influence both OPCs and astrocytes around myelin lesions, which may be exploited to develop novel approaches for myelin repair not only in multiple sclerosis, but also in neurological and neuropsychiatric diseases characterized by demyelination.


Assuntos
Astrócitos/fisiologia , Doenças Desmielinizantes/fisiopatologia , Vesículas Extracelulares/fisiologia , Microglia/fisiologia , Bainha de Mielina/fisiologia , Remielinização/fisiologia , Animais , Astrócitos/patologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Técnicas de Cocultura , Corpo Caloso/patologia , Corpo Caloso/fisiopatologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/patologia , Inflamação/patologia , Inflamação/fisiopatologia , Lisofosfatidilcolinas , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos Endogâmicos C57BL , Microglia/patologia , Bainha de Mielina/patologia , Neuroproteção/fisiologia , Células Precursoras de Oligodendrócitos/patologia , Células Precursoras de Oligodendrócitos/fisiologia , Ratos Sprague-Dawley
12.
Cephalalgia ; 39(14): 1809-1817, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31260335

RESUMO

BACKGROUND: Gain-of-function missense mutations in the α1A subunit of neuronal CaV2.1 channels, which define Familial Hemiplegic Migraine Type 1 (FHM1), result in enhanced cortical glutamatergic transmission and a higher susceptibility to cortical spreading depolarization. It is now well established that neurons signal to surrounding glial cells, namely astrocytes and microglia, in the central nervous system, which in turn become activated and in pathological conditions can sustain neuroinflammation. We and others previously demonstrated an increased activation of pro-algogenic pathways, paralleled by augmented macrophage infiltration, in both isolated trigeminal ganglia and mixed trigeminal ganglion neuron-satellite glial cell cultures of FHM1 mutant mice. Hence, we hypothesize that astrocyte and microglia activation may occur in parallel in the central nervous system. METHODS: We have evaluated signs of reactive glia in brains from naïve FHM1 mutant mice in comparison with wild type animals by immunohistochemistry and Western blotting. RESULTS: Here we show for the first time signs of reactive astrogliosis and microglia activation in the naïve FHM1 mutant mouse brain. CONCLUSIONS: Our data reinforce the involvement of glial cells in migraine, and suggest that modulating such activation may represent an innovative approach to reduce pathology.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Microglia/metabolismo , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Animais , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Distribuição Aleatória , Gânglio Trigeminal/metabolismo
13.
Pharmacol Res ; 142: 223-236, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30818044

RESUMO

Stroke is one of the main causes of death, neurological dysfunctions or disability in elderly. Neuroprotective drugs have been proposed to improve long-term recovery after stroke, but failed to reach clinical effectiveness. Hence, recent studies suggested that restorative therapies should combine neuroprotection and remyelination. Montelukast, an anti-asthmatic drug, was shown to exert neuroprotection in animal models of CNS injuries, but its ability to affect oligodendrocytes, restoring fiber connectivity, remains to be determined. In this study, we evaluated whether montelukast induces long-term repair by promoting fiber connectivity up to 8 weeks after middle cerebral artery occlusion (MCAo), using different experimental approaches such as in vivo diffusion magnetic resonance imaging (MRI), electrophysiological techniques, ex vivo diffusion tensor imaging (DTI)-based fiber tracking and immunohistochemistry. We found that, in parallel with a reduced evolution of ischemic lesion and atrophy, montelukast increased the DTI-derived axial diffusivity and number of myelin fibers, the density of myelin binding protein (MBP) and the number of GSTpi+ mature oligodendrocytes. Together with the rescue of MCAo-induced impairments of local field potentials in ischemic cortex, the data suggest that montelukast may improve fibers reorganization. Thus, to ascertain whether this effect involved changes of oligodendrocyte precursor cells (OPCs) activation and maturation, we used the reporter GPR17iCreERT2:CAG-eGreen florescent protein (GFP) mice that allowed us to trace the fate of OPCs throughout animal's life. Our results showed that montelukast enhanced the OPC recruitment and proliferation at acute phase, and increased their differentiation to mature oligodendrocytes at chronic phase after MCAo. Considering the crosstalk between OPCs and microglia has been widely reported in the context of demyelinating insults, we also assessed microglia activation. We observed that montelukast influenced the phenotype of microglial cells, increasing the number of M2 polarized microglia/macrophages, over the M1 phenotype, at acute phase after MCAo. In conclusion, we demonstrated that montelukast improves fiber re-organization and long-term functional recovery after brain ischemia, enhancing recruitment and maturation of OPCs. The present data suggest that montelukast, an already approved drug, could be "repositioned "as a protective drug in stroke acting also on fiber re-organization.


Assuntos
Acetatos/uso terapêutico , Antiasmáticos/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Quinolinas/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Ciclopropanos , Infarto da Artéria Cerebral Média/fisiopatologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Microglia/efeitos dos fármacos , Acidente Vascular Cerebral/fisiopatologia , Sulfetos
14.
Glia ; 66(5): 1118-1130, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29424466

RESUMO

Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17-iCreERT2 xCAG-eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen-induced GFP-labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor-1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti-inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery.


Assuntos
Doenças Desmielinizantes/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cuprizona , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito , Células Precursoras de Oligodendrócitos/patologia , Fragmentos de Peptídeos , Remielinização/fisiologia , Medula Espinal/metabolismo , Medula Espinal/patologia
15.
Adv Exp Med Biol ; 1051: 169-192, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828731

RESUMO

In 2006, cells heterologously expressing the "orphan" receptor GPR17 were shown to acquire responses to both uracil nucleotides and cysteinyl-leukotrienes, two families of signaling molecules accumulating in brain or heart as a result of hypoxic/traumatic injuries. In subsequent years, evidence of GPR17 key role in oligodendrogenesis and myelination has highlighted it as a "model receptor" for new therapies in demyelinating and neurodegenerative diseases. The apparently contrasting evidence in the literature about the role of GPR17 in promoting or inhibiting myelination can be due to its transient expression in the intermediate stages of differentiation, exerting a pro-differentiating function in early oligodendrocyte precursor cells (OPCs), and an inhibitory role in late stage maturing cells. Meanwhile, several papers extended the initial data on GPR17 pharmacology, highlighting a "promiscuous" behavior of this receptor; indeed, GPR17 is able to respond to other emergency signals like oxysterols or the pro-inflammatory cytokine SDF-1, underlying GPR17 ability to adapt its responses to changes of the surrounding extracellular milieu, including damage conditions. Here, we analyze the available literature on GPR17, in an attempt to summarize its emerging biological roles and pharmacological properties.


Assuntos
Diferenciação Celular , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Medicina Regenerativa , Transdução de Sinais , Animais , Quimiocina CXCL12/metabolismo , Humanos , Bainha de Mielina/metabolismo , Receptores Acoplados a Proteínas G/genética
16.
Glia ; 64(2): 287-99, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26464068

RESUMO

In the adult brain NG2-glia continuously generate mature, myelinating oligodendrocytes. To which extent the differentiation process is common to all NG2-glia and whether distinct pools are recruited for repair under physiological and pathological conditions still needs clarification. Here, we aimed at investigating the differentiation potential of adult NG2-glia that specifically express the G-protein coupled receptor 17 (GPR17), a membrane receptor that regulates the differentiation of these cells at postnatal stages. To this aim, we generated the first BAC transgenic GPR17-iCreER(T2) mouse line for fate mapping studies. In these mice, under physiological conditions, GPR17(+) cells--in contrast to GPR17(-) NG2-glia--did not differentiate within 3 months, a peculiarity that was overcome after cerebral damage induced by acute injury or ischemia. After these insults, GPR17(+) NG2-glia rapidly reacted to the damage and underwent maturation, suggesting that they represent a 'reserve pool' of adult progenitors maintained for repair purposes.


Assuntos
Antígenos/metabolismo , Lesões Encefálicas/fisiopatologia , Isquemia Encefálica/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/fisiologia , Oligodendroglia/fisiologia , Proteoglicanas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Encéfalo/patologia , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Lesões Encefálicas/patologia , Isquemia Encefálica/patologia , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Infarto da Artéria Cerebral Média , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/patologia , Neurogênese/fisiologia , Oligodendroglia/patologia , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
17.
Glia ; 64(8): 1437-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270750

RESUMO

The G protein-coupled receptor 17 (GPR17) plays crucial roles in myelination. It is highly expressed during transition of oligodendrocyte progenitor cells to immature oligodendrocytes, but, after this stage, it must be down-regulated to allow generation of mature myelinating cells. After endocytosis, GPR17 is sorted into lysosomes for degradation or recycled to the plasma membrane. Balance between degradation and recycling is important for modulation of receptor levels at the cell surface and thus for the silencing/activation of GPR17-signaling pathways that, in turn, affect oligodendrocyte differentiation. The molecular mechanisms at the basis of these processes are still partially unknown and their characterization will allow a better understanding of myelination and provide cues to interpret the consequences of GPR17 dysfunction in diseases. Here, we demonstrate that the endocytic trafficking of GPR17 is mediated by the interaction of a type I PDZ-binding motif located at the C-terminus of the receptor and SNX27, a recently identified protein of the endosome-associated retromer complex and whose functions in oligodendrocytes have never been studied. SNX27 knock-down significantly reduces GPR17 plasma membrane recycling in differentiating oligodendrocytes while accelerating cells' terminal maturation. Interestingly, trisomy-linked down-regulation of SNX27 expression in the brain of Ts65Dn mice, a model of Down syndrome, correlates with a decrease in GPR17(+) cells and an increase in mature oligodendrocytes, which, however, fail in reaching full maturation, eventually leading to hypomyelination. Our data demonstrate that SNX27 modulates GPR17 plasma membrane recycling and stability, and that disruption of the SNX27/GPR17 interaction might contribute to pathological oligodendrocyte differentiation defects. GLIA 2016. GLIA 2016;64:1437-1460.


Assuntos
Transporte Biológico/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Nexinas de Classificação/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Diferenciação Celular/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/patologia , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Endocitose/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligodendroglia/patologia , Nexinas de Classificação/deficiência , Nexinas de Classificação/genética
19.
Purinergic Signal ; 12(4): 661-672, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27544384

RESUMO

Oligodendrocyte precursor cells (OPCs, also called NG2 cells) are scattered throughout brain parenchyma, where they function as a reservoir to replace lost or damaged oligodendrocytes, the myelin-forming cells. The hypothesis that, under some circumstances, OPCs can actually behave as multipotent cells, thus generating astrocytes and neurons as well, has arisen from some in vitro and in vivo evidence, but the molecular pathways controlling this alternative fate of OPCs are not fully understood. Their identification would open new opportunities for neuronal replace strategies, by fostering the intrinsic ability of the brain to regenerate. Here, we show that the anti-epileptic epigenetic modulator valproic acid (VPA) can promote the generation of new neurons from NG2+ OPCs under neurogenic protocols in vitro, through their initial de-differentiation to a stem cell-like phenotype that then evolves to "hybrid" cell population, showing OPC morphology but expressing the neuronal marker ßIII-tubulin and the GPR17 receptor, a key determinant in driving OPC transition towards myelinating oligodendrocytes. Under these conditions, the pharmacological blockade of the P2Y-like receptor GPR17 by cangrelor, a drug recently approved for human use, partially mimics the effects mediated by VPA thus accelerating cells' neurogenic conversion. These data show a co-localization between neuronal markers and GPR17 in vitro, and suggest that, besides its involvement in oligodendrogenesis, GPR17 can drive the fate of neural precursor cells by instructing precursors towards the neuronal lineage. Being a membrane receptor, GPR17 represents an ideal "druggable" target to be exploited for innovative regenerative approaches to acute and chronic brain diseases.


Assuntos
Células-Tronco Multipotentes/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem da Célula/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Oligodendroglia/citologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética
20.
Glia ; 63(7): 1256-69, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25779655

RESUMO

Trigeminal (TG) pain often lacks a satisfactory pharmacological control. A better understanding of the molecular cross-talk between TG neurons and surrounding satellite glial cells (SGCs) could help identifying innovative targets for the development of more effective analgesics. We have previously demonstrated that neuronal pro-algogenic mediators upregulate G protein-coupled nucleotide P2Y receptors (P2YRs) expressed by TG SGCs in vitro. Here, we have identified the specific P2YR subtypes involved (i.e., the ADP-sensitive P2Y1 R and the UTP-responsive P2Y2 R subtypes), and demonstrated the contribution of neuron-derived prostaglandins to their upregulation. Next, we have translated these data to an in vivo model of TG pain (namely, rats injected with Complete Freund's adjuvant in the temporomandibular joint), by demonstrating activation of SGCs and upregulation of P2Y1 R and P2Y2 R in the ipsi-lateral TG. To unequivocally link P2YRs to the development of facial allodynia, we treated animals with various purinergic antagonists. The selective P2Y2 R antagonist AR-C118925 completely inhibited SGCs activation, exerted a potent anti-allodynic effect that lasted over time, and was still effective when administration was started 6-days post induction of allodynia, i.e. under subchronic pain conditions. Conversely, the selective P2Y1 R antagonist MRS2179 was completely ineffective. Moreover, similarly to the anti-inflammatory drug acetylsalicylic acid and the known anti-migraine agent sumatriptan, the P2X/P2Y nonselective antagonist PPADS was only partially effective, and completely lost its activity under sub-chronic conditions. Taken together, our results highlight glial P2Y2 Rs as potential "druggable" targets for the successful management of TG-related pain.


Assuntos
Analgésicos não Narcóticos/farmacologia , Dor Facial/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Células Satélites Perineuronais/efeitos dos fármacos , Gânglio Trigeminal/efeitos dos fármacos , Doença Aguda , Animais , Dor Crônica/tratamento farmacológico , Dor Crônica/fisiopatologia , Técnicas de Cocultura , Modelos Animais de Doenças , Dor Facial/fisiopatologia , Adjuvante de Freund , Hiperalgesia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Células Satélites Perineuronais/fisiologia , Articulação Temporomandibular , Gânglio Trigeminal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa