Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 25(8): 1453-61, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25061844

RESUMO

DNA-encoded chemical libraries are collections of small molecules, attached to DNA fragments serving as identification barcodes, which can be screened against multiple protein targets, thus facilitating the drug discovery process. The preparation of large DNA-encoded chemical libraries crucially depends on the availability of robust synthetic methods, which enable the efficient conjugation to oligonucleotides of structurally diverse building blocks, sharing a common reactive group. Reactions of DNA derivatives with amines and/or carboxylic acids are particularly attractive for the synthesis of encoded libraries, in view of the very large number of building blocks that are commercially available. However, systematic studies on these reactions in the presence of DNA have not been reported so far. We first investigated conditions for the coupling of primary amines to oligonucleotides, using either a nucleophilic attack on chloroacetamide derivatives or a reductive amination on aldehyde-modified DNA. While both methods could be used for the production of secondary amines, the reductive amination approach was generally associated with higher yields and better purity. In a second endeavor, we optimized conditions for the coupling of a diverse set of 501 carboxylic acids to DNA derivatives, carrying primary and secondary amine functions. The coupling efficiency was generally higher for primary amines, compared to secondary amine substituents, but varied considerably depending on the structure of the acids and on the synthetic methods used. Optimal reaction conditions could be found for certain sets of compounds (with conversions >80%), but multiple reaction schemes are needed when assembling large libraries with highly diverse building blocks. The reactions and experimental conditions presented in this article should facilitate the synthesis of future DNA-encoded chemical libraries, while outlining the synthetic challenges that remain to be overcome.


Assuntos
Aminas/química , Ácidos Carboxílicos/química , DNA/química , Oligonucleotídeos/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Aldeídos/química , Aminação , Técnicas de Química Sintética , Resinas de Troca Iônica/química , Oxirredução
2.
Wiley Interdiscip Rev RNA ; 6(6): 631-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26361734

RESUMO

The power of riboswitches in regulation of bacterial metabolism derives from coupling of two characteristics: recognition and folding. Riboswitches contain aptamers, which function as biosensors. Upon detection of the signaling molecule, the riboswitch transduces the signal into a genetic decision. The genetic decision is coupled to refolding of the expression platform, which is distinct from, although overlapping with, the aptamer. Early biophysical studies of riboswitches focused on recognition of the ligand by the aptamer-an important consideration for drug design. A mechanistic understanding of ligand-induced riboswitch RNA folding can further enhance riboswitch ligand design, and inform efforts to tune and engineer riboswitches with novel properties. X-ray structures of aptamer/ligand complexes point to mechanisms through which the ligand brings together distal strand segments to form a P1 helix. Transcriptional riboswitches must detect the ligand and form this P1 helix within the timescale of transcription. Depending on the cell's metabolic state and cellular environmental conditions, the folding and genetic outcome may therefore be affected by kinetics of ligand binding, RNA folding, and transcriptional pausing, among other factors. Although some studies of isolated riboswitch aptamers found homogeneous, prefolded conformations, experimental, and theoretical studies point to functional and structural heterogeneity for nascent transcripts. Recently it has been shown that some riboswitch segments, containing the aptamer and partial expression platforms, can form binding-competent conformers that incorporate an incomplete aptamer secondary structure. Consideration of the free energy landscape for riboswitch RNA folding suggests models for how these conformers may act as transition states-facilitating rapid, ligand-mediated aptamer folding.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Riboswitch , Sítios de Ligação , Desenho de Fármacos , Ligantes , Modelos Moleculares , Dobramento de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa