Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836711

RESUMO

The primary purpose of this work was the initiation and optimization of shoot cultures of different Vitis vinifera L. cultivars: cv. Chardonnay, cv. Hibernal, cv. Riesling, cv. Johanniter, cv. Solaris, cv. Cabernet Cortis, and cv. Regent. Cultures were maintained on 30-day growth cycles using two media, Murashige and Skoog (MS) and Schenk and Hildebrandt (SH), with various concentrations of plant growth regulators. Tested media ('W1'-'W4') contained varying concentrations of 6-benzylaminopurine (BA) in addition to indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA). High performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was used for metabolomic profiling. In all tested extracts, 45 compounds were identified (6 amino acids, 4 phenolic acids, 13 flavan-3-ols, 3 flavonols, and 19 stilbenoids). Principal component analysis (PCA) was performed to assess the influence of the genotype and medium on metabolic content. PCA showed that metabolic content was mainly influenced by genotype and to a lesser extent by medium composition. MS media variants induced the amino acid, procyanidin, and flavan-3-ol production. In addition, the antioxidant potential and anti-tyrosinase activity was measured spectrophotometrically. The studies on antioxidant activity clearly reveal very high efficiency in reducing free radicals in the tested extracts. The strongest tyrosinase inhibition capacity was proved for shoots cv. Hibernal cultured in SH medium and supplemented with NAA, with an inhibition of 17.50%. These studies show that in vitro cultures of V. vinifera cvs. can be proposed as an alternative source of plant material that can be potentially used in cosmetic industry.


Assuntos
Vitis , Vitis/química , Antioxidantes/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Compostos Fitoquímicos , Cromatografia Líquida de Alta Pressão
2.
J Sci Food Agric ; 103(9): 4692-4703, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36905183

RESUMO

BACKGROUND: The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600-1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of the climatic conditions on bean physical characteristics and chemical composition were assessed. RESULTS: We showed that the environment had a significant effect on the bean density and on all bean chemical compounds. The environment effect was stronger than the genotype and genotype-environment interaction effects for cafestol, kahweol, arachidic (C20:0), behenic acid (C22:0), 2,3-butanediol, 2-methyl-2-buten-1-ol, benzaldehyde, benzene ethanol, butyrolactone, decane, dodecane, ethanol, pentanoic acid, and phenylacetaldehyde bean content. A 2 °C increase in temperature had more influence on bean chemical compounds than a 100 mm increase in soil water content. Temperature was positively correlated with lipids and volatile compounds. With an innovative method using iterative moving averages, we showed that correlation of temperature, vapour pressure deficit (VPD) and rainfall with lipids and volatiles was higher between the 10th and 20th weeks after flowering highlighting this period as crucial for the synthesis of these chemicals. Genotype specific responses were evidenced and could be considered in future breeding programmes to maintain coffee beverage quality in the midst of climate change. CONCLUSION: This first study of the effect of the genotype-environment interactions on chemical compounds enhances our understanding of the sensitivity of coffee quality to genotype environment interactions during bean development. This work addresses the growing concern of the effect of climate change on speciality crops and more specifically coffee. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Coffea , Interação Gene-Ambiente , Coffea/química , Melhoramento Vegetal , Sementes/química , Lipídeos/análise
3.
Int J Mol Sci ; 20(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547069

RESUMO

Somatic embryogenesis (SE) is one of the most promising processes for large-scale dissemination of elite varieties. However, for many plant species, optimizing SE protocols still relies on a trial-and-error approach. Using coffee as a model plant, we report here the first global analysis of metabolome and hormone dynamics aiming to unravel mechanisms regulating cell fate and totipotency. Sampling from leaf explant dedifferentiation until embryo development covered 15 key stages. An in-depth statistical analysis performed on 104 metabolites revealed that massive re-configuration of metabolic pathways induced SE. During initial dedifferentiation, a sharp decrease in phenolic compounds and caffeine levels was also observed while auxins, cytokinins and ethylene levels were at their highest. Totipotency reached its highest expression during the callus stages when a shut-off in hormonal and metabolic pathways related to sugar and energetic substance hydrolysis was evidenced. Abscisic acid, leucine, maltotriose, myo-inositol, proline, tricarboxylic acid cycle metabolites and zeatin appeared as key metabolic markers of the embryogenic capacity. Combining metabolomics with multiphoton microscopy led to the identification of chlorogenic acids as markers of embryo redifferentiation. The present analysis shows that metabolite fingerprints are signatures of cell fate and represent a starting point for optimizing SE protocols in a rational way.


Assuntos
Coffea/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Técnicas de Embriogênese Somática de Plantas , Coffea/citologia , Folhas de Planta/citologia
4.
Food Chem X ; 22: 101362, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38633739

RESUMO

Grape seed residues represent the raw material to produce several value-added products including polyphenol-rich extracts with nutritional and health attributes. Although the impact of variety and environmental conditions on the polyphenol composition in fresh berries is recognized, no data are available regarding grape seed residues. The chemical composition of grape seed residues from wine distilleries in France, Spain and Italy was characterized by mass spectrometry. Forty-two metabolites were identified belonging to non-galloylated and galloylated procyanidins as well as amino acids. Polyphenol concentrations in the red varieties originated from Champagne or Veneto were twice higher than in white varieties from the Loire Valley. The chemical profiles of grape seed residues were mainly classified according to the color variety with galloylated procyanidins as biomarkers of white varieties and non-galloylated procyanidins as biomarkers of red ones. The present approach might assist the selection of grape seed residues as quality raw materials for the production of polyphenol-rich extracts.

5.
Heliyon ; 10(6): e28078, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533072

RESUMO

Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of Apocynaceae, one member of this medicinal plant family, the succulent tree Pachypodium lamerei Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in Apocynaceae, we sequenced and assembled the P. lamerei genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads. Phylogenomics revealed that, among the Apocynaceae whose genomes have been sequenced, the Madagascar palm is so far the species closest to the common ancestor between MIA producers/non-MIA producers. Transposable elements, constituting 72.48% of the genome, emerge as potential key players in shaping genomic architecture and influencing specialized metabolic pathways. The absence of crucial MIA biosynthetic genes such as strictosidine synthase in P. lamerei and non-Rauvolfioideae species hints at a transposon-mediated mechanism behind gene loss. Phylogenetic analysis not only showcases the evolutionary divergence of specialized metabolite biosynthesis within Apocynaceae but also underscores the role of transposable elements in this intricate process. Moreover, we shed light on the low conservation of enzymes involved in the final stages of MIA biosynthesis in the distinct MIA-producing plant families, inferring independent gains of these specialized enzymes along the evolution of these medicinal plant clades. Overall, this study marks a leap forward in understanding the genomic dynamics underpinning the evolution of specialized metabolites biosynthesis in the Apocynaceae family, with transposons emerging as potential architects of genomics restructuring and gene loss.

6.
Food Chem ; 429: 136859, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37463536

RESUMO

This study hypothesized the existence of cultivar-associated correlations between grape berry metabolites and its microbial residents, in Douro wine region. Integrated metabolomics with metabarcoding showed that the microbial biodiversity is not associated to berry sugar concentration, but closely connected to the profile of amino acids, flavonoids and wax compounds, which drove cultivar differentiation together with the prevalence of pathogenic fungi, yeasts and bacteria, mainly Dothideomycetes and Gammaproteobacteria. Over 7000 metabolite-microbiota correlations with ρ >|0.99| exposed a core of 15 metabolites linked to 11 microbial taxa. Serine, oxalate, cyanidin-3-O-glucoside, petunidin-3-O-glucoside, gallic acid, germanicol, sitosterol and erythrodiol correlated negatively to the abundance of most taxa, including Alternaria, Aureobasidium, Pseudopithomyces, Pseudomonas and Sphingomonas. In contrast, phenylalanine, asparagine, alanine, (epi)gallocatechin and procyanidin gallate mediated positive metabolite-OTU correlations. E. necator and A. carbonarius correlated negatively with stigmasterol and amyrin. Complex fungi-bacteria relationships ruled by Dothideomycetes and Alphaproteobacteria further suggest tight host-microbe interactions at the carposphere.


Assuntos
Microbiota , Vitis , Vinho , Vitis/química , Vinho/análise , Frutas/química , Flavonoides/análise , Fungos/metabolismo
7.
Protoplasma ; 260(2): 607-624, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35947213

RESUMO

The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.


Assuntos
Alcaloides , Antineoplásicos , Catharanthus , Alcaloides/metabolismo , Regulação da Expressão Gênica de Plantas , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética
8.
Metabolites ; 10(10)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993190

RESUMO

Phenolic compounds are involved in plant response to environmental conditions and are highly present in leaves of Coffea arabica L., originally an understory shrub. To increase knowledge of C. arabica leaf phenolic compounds and their patterns in adaptation to light intensity, mature leaves of Ethiopian wild accessions, American pure lines and their relative F1 hybrids were sampled in full sun or under 50% shade field plots in Mexico and at two contrasting elevations in Nicaragua and Colombia. Twenty-one phenolic compounds were identified by LC-DAD-MS2 and sixteen were quantified by HPLC-DAD. Four of them appeared to be involved in C. arabica response to light intensity. They were consistently more accumulated in full sun, presenting a stable ratio of leaf content in the sun vs. shade for all the studied genotypes: 1.6 for 5-CQA, F-dihex and mangiferin and 2.8 for rutin. Moreover, 5-CQA and mangiferin contents, in full sun and shade, allowed for differentiating the two genetic groups of Ethiopian wild accessions (higher contents) vs. cultivated American pure lines. They appear, therefore, to be potential biomarkers of adaptation of C. arabica to light intensity for breeding programs. We hypothesize that low 5-CQA and mangiferin leaf contents should be searched for adaptation to full-sun cropping systems and high contents used for agroforestry systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa