Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inflamm Res ; 69(10): 1019-1026, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32719925

RESUMO

OBJECTIVE AND DESIGN: Ghrelin has a key role in modulating energy metabolism and weight gain. The present study aimed at studying the potential role of ghrelin in the development and/or exacerbation of organ damage in a mouse model of diet-induced obesity. OBJECTIVE AND DESIGN: Adult mice were fed one of two diets for 20 weeks: standard high carbohydrate (HC) or high-fat high-sugar (HFHS). Starting week 17, the animals were given regular intraperitoneal ghrelin (160 µg/kg) or saline injections Abdominal fat, serum creatinine, and glucose levels, as well as kidney, liver and heart weight and pathology were assessed. RESULTS: Ghrelin-injected mice showed significant organ damage, which was more exacerbated in HFHS-fed animals. While the HFHS diet was associated with significant liver damage, ghrelin administration did not reverse it. Interestingly, ghrelin administration induced moderate kidney damage and significantly affected the heart by increasing perivascular and myocardium fibrosis, steatosis as well as inflammation. Moreover, serum creatinine levels were higher in the animal group injected with ghrelin. CONCLUSION: Ghrelin administration was associated with increased functional and structural organ damage, regardless of diet. The present study provides novel evidence of multi-organ physiologic alterations secondary to ghrelin administration.


Assuntos
Gordura Abdominal , Grelina/metabolismo , Rim/patologia , Fígado/patologia , Miocárdio/patologia , Animais , Dieta Hiperlipídica , Glucose/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Aumento de Peso
2.
Cell Biochem Funct ; 37(4): 245-255, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31017709

RESUMO

Damage to podocytes is a key event in glomerulopathies. While energy dense food can contribute to kidney damage, the role of the orixegenic hormone "ghrelin" in podocyte biology is still unknown. In the present study, we investigated the effect of ghrelin on podocyte survival as well as the signalling pathways mediating ghrelin effect in immortalized cultured rat podocytes. RT-PCR analysis revealed that GHS-R1 is expressed in rat podocytes. Western blot analysis showed that ghrelin upregulated COX-2 protein expression in a time and dose-dependent manner. Additionally, ghrelin activated P38 MAPK, AKT, and ERK1/2 pathways and also induced P38 MAPK phosphorylation in high glucose conditions. Ghrelin induced ROS release and dose dependently reduced podocyte survival. Ghrelin mediated podocyte cell death was partially reversed by pharmacologically inhibiting P38 MAPK or phospholipase C (PLC). Furthermore, PLC inhibitor (U73122) inhibited ghrelin induced P38 MAPK activation. While PI3K inhibitor (LY294002) was without effect on cell survival or P38 MAPK activation, it inhibited ghrelin induced ERK1/2 phosphorylation. Finally, ghrelin induced TAU phosphorylation was reversed by pharmacologic inhibitors of either P38 MAPK or PKA. In conclusion, ghrelin activated harmful molecular pathways in podocytes that can be damaging to the glomerular filtration barrier SIGNIFICANCE OF THE STUDY: Endocrine derangements secondary to obesity are major players in the aetiology of renal injuries. Furthermore, energy dense diet is thought to be the major element in developing obesity. Appetite and increase in energy intake are regulated by complex hormonal pathways which mainly include the orexigenic hormone "ghrelin" in addition to leptin. To date no study have highlighted a significant role for ghrelin in kidney biology, and therefore, it is thought that its endocrine effect is mostly limited to adipose tissue metabolism and appetite regulation. In this study, we first showed that ghrelin receptor is expressed on glomerular podocytes. Also, ghrelin showed negative impact on podocyte survival through modulating signalling pathways such as P38 MAPK and AKT known to play a key role in podocyte health. Moreover, the negative effects of ghrelin on podocytes were further exacerbated in hyperglycemic conditions. Of note, podocytes contribute to the formation and the maintenance of the glomerular filtration barrier and thus are important for normal renal function. Therefore, ghrelin secretion in the context of obesity could be involved in the aetiology of kidney injury, a well-known hallmark found in obese patients.


Assuntos
Grelina/farmacologia , Podócitos/citologia , Podócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Cálcio/análise , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Camundongos , Podócitos/metabolismo
3.
Inflamm Res ; 67(2): 191-201, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29085960

RESUMO

OBJECTIVE AND DESIGN: The aim of this study is to elucidate TGF-ß1 signaling pathways involved in COX-2 protein induction and modulation of TAU protein phosphorylation in cultured podocytes. MATERIALS, TREATMENT AND METHODS: In vitro cultured immortalized podocytes were stimulated with TGF-ß1 in presence and absence of pharmacologic inhibitors for various signaling pathways and phosphatases. Then, COX-2 protein expression, as well as P38MAPK, AKT and TAU phosphorylation levels were evaluated by western blot analysis. RESULTS: TGF-ß1 induction of COX-2 protein levels was completely blocked by pharmacologic inhibitors of phosphatases, P38 MAPK, or NF-қB pathways. Time course experiments showed that TGF-ß1 activated p38 MAPK after 5 min of stimulation. Interestingly, podocyte co-incubated with TGF-ß1, high glucose and/or PGE2 showed strong increase in p38 MAPK and AKT phosphorylation as well as COX- 2 protein expression levels. Levels of phosphorylated AKT were further reduced and levels of phosphorylated p38 were increased when PGE2 was added to the culture media. Interestingly, selective phosphatases inhibitors completely abrogated PGE2-induced P38 MAPK and TAU phosphorylation. Also, inhibition of phosphatases reversed TGF-ß1-induced COX-2 protein expression either alone or when incubated with high glucose or PGE2. CONCLUSION: These data suggest TGF-ß1 mediates its effect in podocyte through novel signaling mechanisms including phosphatases and TAU protein phosphorylation.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Monoéster Fosfórico Hidrolases/farmacologia , Podócitos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteínas tau/metabolismo , Animais , Células Cultivadas , Glucose/farmacologia , Camundongos , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa