Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 50(6): 1720-1734, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36690882

RESUMO

PURPOSE: This study aimed to investigate the impact of several ComBat harmonization strategies, intra-tumoral sub-volume characterization, and automatic segmentations for progression-free survival (PFS) prediction through radiomics modeling for patients with head and neck cancer (HNC) in PET/CT images. METHODS: The HECKTOR MICCAI 2021 challenge set containing PET/CT images and clinical data of 325 oropharynx HNC patients was exploited. A total of 346 IBSI-compliant radiomic features were extracted for each patient's primary tumor volume defined by the reference manual contours. Modeling relied on least absolute shrinkage Cox regression (Lasso-Cox) for feature selection (FS) and Cox proportional-hazards (CoxPH) models were built to predict PFS. Within this methodological framework, 8 different strategies for ComBat harmonization were compared, including before or after FS, in feature groups separately or all features directly, and with center or clustering-determined labels. Features extracted from tumor sub-volume clustering were also investigated for their prognostic additional value. Finally, 3 automatic segmentations (2 threshold-based and a 3D U-Net) were also compared. All results were evaluated with the concordance index (C-index). RESULTS: Radiomics features without harmonization, combined with clinical factors, led to models with C-index values of 0.69 in the testing set. The best version of ComBat harmonization, i.e., after FS, for feature groups separately and relying on clustering-determined labels, achieved a C-index of 0.71. The use of features extracted from tumor sub-volumes further improved the C-index to 0.72. Models that relied on the automatic segmentations yielded close but slightly lower prognostic performance (0.67-0.70) compared to reference contours. CONCLUSION: A standard radiomics pipeline allowed for prediction of PFS in a multicenter HNC cohort. Applying a specific strategy of ComBat harmonization improved the performance. The extraction of intra-tumoral sub-volume features and automatic segmentation could contribute to the improvement and automation of prognosis modeling, respectively.


Assuntos
Neoplasias de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Prognóstico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Modelos de Riscos Proporcionais
2.
Sci Rep ; 13(1): 20014, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973797

RESUMO

This study aims to develop a robust pipeline for classifying invasive ductal carcinomas and benign tumors in histopathological images, addressing variability within and between centers. We specifically tackle the challenge of detecting atypical data and variability between common clusters within the same database. Our feature engineering-based pipeline comprises a feature extraction step, followed by multiple harmonization techniques to rectify intra- and inter-center batch effects resulting from image acquisition variability and diverse patient clinical characteristics. These harmonization steps facilitate the construction of more robust and efficient models. We assess the proposed pipeline's performance on two public breast cancer databases, BreaKHIS and IDCDB, utilizing recall, precision, and accuracy metrics. Our pipeline outperforms recent models, achieving 90-95% accuracy in classifying benign and malignant tumors. We demonstrate the advantage of harmonization for classifying patches from different databases. Our top model scored 94.7% for IDCDB and 95.2% for BreaKHis, surpassing existing feature engineering-based models (92.1% for IDCDB and 87.7% for BreaKHIS) and attaining comparable performance to deep learning models. The proposed feature-engineering-based pipeline effectively classifies malignant and benign tumors while addressing variability within and between centers through the incorporation of various harmonization techniques. Our findings reveal that harmonizing variabilities between patches from different batches directly impacts the learning and testing performance of classification models. This pipeline has the potential to enhance breast cancer diagnosis and treatment and may be applicable to other diseases.


Assuntos
Neoplasias da Mama , Carcinoma Ductal , Humanos , Feminino , Neoplasias da Mama/patologia , Bases de Dados Factuais
3.
Phys Eng Sci Med ; 45(3): 729-746, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35670909

RESUMO

Lung and colon cancers lead to a significant portion of deaths. Their simultaneous occurrence is uncommon, however, in the absence of early diagnosis, the metastasis of cancer cells is very high between these two organs. Currently, histopathological diagnosis and appropriate treatment are the only way to improve the chances of survival and reduce cancer mortality. Using artificial intelligence in the histopathological diagnosis of colon and lung cancer can provide significant help to specialists in identifying cases of colon and lung cancers with less effort, time and cost. The objective of this study is to set up a computer-aided diagnostic system that can accurately classify five types of colon and lung tissues (two classes for colon cancer and three classes for lung cancer) by analyzing their histopathological images. Using machine learning, features engineering and image processing techniques, the six models XGBoost, SVM, RF, LDA, MLP and LightGBM were used to perform the classification of histopathological images of lung and colon cancers that were acquired from the LC25000 dataset. The main advantage of using machine learning models is that they allow a better interpretability of the classification model since they are based on feature engineering; however, deep learning models are black box networks whose working is very difficult to understand due to the complex network design. The acquired experimental results show that machine learning models give satisfactory results and are very precise in identifying classes of lung and colon cancer subtypes. The XGBoost model gave the best performance with an accuracy of 99% and a F1-score of 98.8%. The implementation and the development of this model will help healthcare specialists identify types of colon and lung cancers. The code will be available upon request.


Assuntos
Neoplasias do Colo , Neoplasias Pulmonares , Inteligência Artificial , Neoplasias do Colo/diagnóstico por imagem , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem
4.
Comput Biol Med ; 142: 105168, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033876

RESUMO

Atrial fibrillation (AF) is the most common supraventricular cardiac arrhythmia, resulting in high mortality rates among affected patients. AF occurs as episodes coming from irregular excitations of the ventricles that affect the functionality of the heart and can increase the risk of stroke and heart attack. Early and automatic prediction, detection, and classification of AF are important steps for effective treatment. For this reason, it is the subject of intensive research in both medicine and engineering fields. The latter research focuses on three axes: prediction, classification, and detection. Knowing that AF is often asymptomatic and that its episodes are often very short, its automatic early detection is a very complicated but clinically important task to improve AF treatment and reduce the risks for the patients. This article is a review of publications from the past decade, focusing on AF episode prediction, detection, and classification using wavelets and artificial intelligence (AI). Forty-five articles were selected of which five are about AF in general, four articles compare accuracy, recall and precision between Fourier transform (FT) and wavelets transform (WT), and thirty-six are about detection, classification, and prediction of AF with WT: 15 are based on deep learning (DL) and 21 on conventional machine learning (ML). Of the thirty-six studies, thirty were published after 2015, confirming that this particular research area is very important and has great potential for future research.


Assuntos
Inteligência Artificial , Fibrilação Atrial , Fibrilação Atrial/diagnóstico , Eletrocardiografia , Humanos , Aprendizado de Máquina , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa