Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Odontology ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771492

RESUMO

Poly-lactic acid (PLA) has been proposed in dentistry for several regenerative procedures owing to its biocompatibility and biodegradability. However, the presence of methyl groups renders PLA hydrophobic, making the surface less ideal for cell attachment, and it does not promote tissue regeneration. Upgrading PLA with inductive biomaterial is a crucial step to increase the bioactivity of the PLA and allow cellular adhesion. Our purpose is to evaluate biocompatibility, bioactivity, cellular adhesion, and mechanical properties of 3D-printed PLA scaffold coated with poly-dopamine (PDA) and nano-hydroxyapatite (n-HA) versus PLA and PLA/n-HA scaffolds. The fused deposition modelling technique was used to print PLA, PLA with embedded n-HA particles, and PLA scaffold coated with PDA/n-HA by immersion. After matrices characterization for their chemical composition and surface properties, testing the compressive strength was pursued using a universal testing machine. The bioactivity of scaffolds was evaluated by monitoring the formation of calcium phosphate compounds after simulated body fluid immersion. The PLA/PDA/n-HA scaffold showed the highest compressive strength which was 29.11 ± 7.58 MPa with enhancing calcium phosphate crystals deposition with a specific calcium polyphosphate phase formed exclusively on PLA/PDA/n-HA. With cell viability assay, the PDA/n-HA-coated matrix was biocompatible with increase in the IC50, reaching ⁓ 176.8 at 72 without cytotoxic effect on the mesenchymal stem cells, promoting their adhesion and proliferation evaluated by confocal microscopy. The study explored the biocompatibility, bioactivity, and the cell adhesion ability of PDA/n-HA coat on a 3D-printed PLA scaffold that qualifies its use as a promising regenerative material.

2.
BMC Oral Health ; 24(1): 114, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243218

RESUMO

BACKGROUND: To assess histologically the success of the pulp capping approach performed in traumatically exposed dogs' teeth using a novel injectable gelatin-treated dentin matrix light cured hydrogel (LCG-TDM) compared with LCG, MTA and TheraCal LC. METHODS: Sixty-four dogs' teeth were divided into two groups (each including 32 teeth) based on the post-treatment evaluation period: group I: 2 weeks and group II: 8 weeks. Each group was further subdivided according to the pulp capping material into four subgroups (n = 8), with subgroup A (light-cured gelatin hydrogel) as the control subgroup, subgroup B (LCG-TDM), subgroup C (TheraCal LC), and subgroup D (MTA). Pulps were mechanically exposed in the middle of the cavity floor and capped with different materials. An assessment of periapical response was performed preoperatively and at 8 weeks. After 2 and 8-week intervals, the dogs were sacrificed, and the teeth were stained with hematoxylin-eosin and graded by using a histologic scoring system. Statistical analysis was performed using the chi-square and Kruskal-Wallis tests (p = 0.05). RESULTS: All subgroups showed mild inflammation with normal pulp tissue at 2 weeks with no significant differences between subgroups (p ≤ 0.05), except for the TheraCal LC subgroup, which exhibited moderate inflammation (62.5%). Absence of a complete calcified bridge was reported in all subgroups at 2 weeks, while at 8 weeks, the majority of samples in the LCG-TDM and MTA-Angelus subgroups showed complete dentin bridge formation and absence of inflammatory pulp response with no significant differences between them (p ≤ 0.05). However, the formed dentin in the LCG-TDM group was significantly thicker, with layers of ordered odontoblasts identified to create a homogeneous tubular structure and numerous dentinal tubule lines suggesting a favourable trend towards dentin regeneration. TheraCal LC samples revealed a reasonably thick dentin bridge with moderate inflammation (50%) and LCG showed heavily fibrous tissue infiltrates with areas of degenerated pulp with no signs of hard tissue formation. CONCLUSIONS: LCG-TDM, as an extracellular matrix-based material, has the potential to regenerate dentin and preserve pulp vitality, making it a viable natural alternative to silicate-based cements for healing in vivo dentin defects in direct pulp-capping procedures.


Assuntos
Dentina Secundária , Agentes de Capeamento da Polpa Dentária e Pulpectomia , Animais , Cães , Compostos de Cálcio/uso terapêutico , Polpa Dentária/patologia , Capeamento da Polpa Dentária/métodos , Dentina , Dentina Secundária/patologia , Combinação de Medicamentos , Gelatina/uso terapêutico , Hidrogéis/uso terapêutico , Inflamação/patologia , Óxidos/uso terapêutico , Agentes de Capeamento da Polpa Dentária e Pulpectomia/uso terapêutico , Silicatos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa