Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biotechnol ; 21(1): 15, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33573639

RESUMO

BACKGROUND: CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. RESULTS: In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. CONCLUSIONS: The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi.


Assuntos
Aspergillus/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Proteínas de Bactérias/genética , Endonucleases/genética , Francisella , Regulação Fúngica da Expressão Gênica , RNA Guia de Cinetoplastídeos
2.
BMC Biotechnol ; 17(1): 15, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209146

RESUMO

BACKGROUND: Removal of non-cellulosic impurities from cotton fabric, known as scouring, by conventional alkaline treatment causes environmental problems and reduces physical strength of fabrics. In this study, an endo-polygalacturonase (EndoPG) from Aspergillus aculeatus produced in Pichia pastoris was evaluated for its efficiency as a bioscouring agent while most current bioscouring process has been performed using crude pectinase preparation. RESULTS: The recombinant EndoPG exhibited a specific activity of 1892.08 U/mg on citrus pectin under the optimal condition at 50 °C, pH 5.0 with a V max and K m of 65,451.35 µmol/min/mL and 15.14 mg/mL, respectively. A maximal activity of 2408.70 ± 26.50 U/mL in the culture supernatant was obtained by high cell density batch fermentation, equivalent to a 4.8 times greater yield than that from shake-flask culture. The recombinant enzyme was shown to be suitable for application as a bioscouring agent, in which the wettability of cotton fabric was increased by treatment with enzyme at 300 U/mL scouring solution at 40 °C, pH 5.0 for 1 h. The bio-scoured fabric has comparable wettability to that obtained by conventional chemical scouring, but has higher tensile strength. CONCLUSION: The work has demonstrated for the first time functions of A. aculeatus EndoPG on bioscouring in eco-textile processing. EndoPG alone was shown to possess effective scouring activity. High expression level and homogeneity could be achieved in bench-scale bioreactor.


Assuntos
Aspergillus/enzimologia , Técnicas de Cultura Celular por Lotes/métodos , Fibra de Algodão , Pichia/enzimologia , Poligalacturonase/biossíntese , Poligalacturonase/química , Aspergillus/genética , Reatores Biológicos/microbiologia , Detergentes/química , Detergentes/metabolismo , Teste de Materiais , Pichia/genética , Pichia/crescimento & desenvolvimento , Poligalacturonase/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Têxteis
3.
J Biotechnol ; 355: 53-64, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35788357

RESUMO

CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited. Here, we present a single CRISPR/Cpf1 plasmid system in Aspergillus aculeatus strain TBRC 277, an industrially relevant cell factory. We first evaluated the functionality of three Cpf1 orthologs from Acidaminococcus sp. BV3L6 (AsCpf1), Francisella tularensis subsp. novicida U112 (FnCpf1), and Lachnospiraceae bacterium (LbCpf1), in RNA-guided site-specific DNA cleavage at the pksP locus. FnCpf1 showed the highest editing efficiency (93 %) among the three Cpf1s. It was further investigated for its ability to delete a 1.7 kb and a 0.5 kb from pksP and pyrG genes, respectively, using two protospacers targeting these gene loci in a single crRNA array. Lastly, simultaneous editing of three sites within TBRC 277 genome was performed using three guide sequences targeting these two genes as well as an additional gene, kusA, which resulted in combined editing efficiency of 40 %. The editing of the NHEJ pathway by targeting kusA to generate a NHEJ-deficient strain of A. aculeatus TBRC 277 improved gene targeting efficiency and yielded more precise gene-editing than that of using wild-type strain. This promising genome-editing system can be used for strain improvement in industrial applications such as production of valuable bioproducts.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Aspergillus/genética , Aspergillus/metabolismo , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Endonucleases/metabolismo , Francisella , Edição de Genes/métodos , RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa