Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Circ Res ; 133(1): 25-44, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37264926

RESUMO

BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/metabolismo , Inflamação , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
2.
Clin Sci (Lond) ; 136(5): 379-382, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35274135

RESUMO

Osteoprotegerin (OPG), also known as osteoclastogenesis inhibitory factor or tumor necrosis factor receptor superfamily member 11B, is well known as a modulator of bone remodeling. The contribution of OPG to cardiovascular disease (CVD) has been suggested, but its molecular mechanism is complex and remains unclear. In the present study, Alves-Lopes et al. (Clin. Sci. (Lond.) (2021) 135(20): https://doi.org/10.1042/CS20210643) reported the critical role of syndecan-1 (SDC-1, also known as CD138), a surface protein part of the endothelial glycocalyx, in OPG-induced vascular dysfunction. The authors found that in endothelial cells (ECs), through SDC-1, OPG increased eNOS Thr495 phosphorylation, thereby inhibiting eNOS activity. Furthermore, the OPG-SDC-1 interaction increased reactive oxygen species (ROS) production through NOX1/4 activation. Both the reduced eNOS activity and induced ROS production inhibited NO production and impaired EC function. In vascular smooth muscle cells (VSMCs), the OPG-SDC-1 interaction increased ROS production through NOX1/4 activation, subsequently increased MLC phosphorylation-mediated Rho kinase-MYPT1 regulation, leading to increased vascular contraction. Ultilizing wire myography and mechanistic studies, the authors nicely provide the evidence that SDC-1 plays a crucial role in OPG-induced vascular dysfunction. As we mentioned above, the molecular mechanism and roles of OPG in cardiovascular system are complex and somewhat confusing. In this commentary, we briefly summarize the OPG-mediated signaling pathways in cardiovascular system.


Assuntos
Células Endoteliais , Osteoprotegerina , Células Endoteliais/metabolismo , Humanos , Inflamação , Osteoprotegerina/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio
3.
Curr Atheroscler Rep ; 24(5): 323-336, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332444

RESUMO

PURPOSE OF REVIEW: As both a cholesterol acceptor and carrier in the reverse cholesterol transport (RCT) pathway, high-density lipoprotein (HDL) is putatively atheroprotective. However, current pharmacological therapies to increase plasma HDL cholesterol (HDL-c) concentration have paradoxically failed to prevent or reduce atherosclerosis and cardiovascular disease (CVD). Given that free cholesterol (FC) transfer between surfaces of lipoproteins and cells is reversible, excess plasma FC can be transferred to the cells of peripheral tissue sites resulting in atherosclerosis. Here, we summarize potential mechanisms contributing to this paradox and highlight the role of excess free cholesterol (FC) bioavailability in atherosclerosis vs. atheroprotection. RECENT FINDINGS: Recent findings have established a complex relationship between HDL-c concentration and atherosclerosis. Systemic scavenger receptor class B type 1 (SR-B1) knock out (KO) mice exhibit with increased diet-induced atherosclerosis despite having an elevated plasma HDL-c concentration compared to wild type (WT) mice. The greater bioavailability of HDL-FC in SR-B1 vs. WT mice is associated with a higher FC content in multiple cell types and tissue sites. These results suggest that dysfunctional HDL with high FC bioavailability is atheroprone despite high HDL-c concentration. Past oversimplification of HDL-c involvement in cholesterol transport has led to the failures in HDL targeted therapy. Evidence suggests that FC-mediated functionality of HDL is of higher importance than its quantity; as a result, deciphering the regulatory mechanisms by which HDL-FC bioavailability can induce atherosclerosis can have far-reaching clinical implications.


Assuntos
Aterosclerose , Colesterol , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , HDL-Colesterol , Humanos , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Knockout , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
4.
Curr Oncol Rep ; 24(5): 543-553, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35192118

RESUMO

PURPOSE OF REVIEW: Despite the advancements of modern radiotherapy, radiation-induced cardiovascular disease (RICVD) remains a common cause of morbidity and mortality among cancer survivors. RECENT FINDINGS: Proposed pathogenetic mechanisms of RICVD include endothelial cell damage with accelerated atherosclerosis, pro-thrombotic alterations in the coagulation pathway as well as inflammation and fibrosis of the myocardial, pericardial, valvular, and conduction tissues. Prevention of RICVD can be achieved by minimizing the exposure of the cardiovascular system to radiation, by treatment of underlying cardiovascular risk factors and cardiovascular disease, and possibly by prophylactic pharmacotherapy post exposure. Herein we summarize current knowledge on the mechanisms underlying the pathogenesis of RICVD and propose prevention and treatment strategies.


Assuntos
Doenças Cardiovasculares , Neoplasias , Lesões por Radiação , Cardiotoxicidade/etiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Coração , Humanos , Neoplasias/complicações , Neoplasias/radioterapia , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle
5.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682810

RESUMO

Cultured mammalian cells have been shown to respond to microgravity (µG), but the molecular mechanism is still unknown. The study we report here is focused on molecular and cellular events that occur within a short period of time, which may be related to gravity sensing by cells. Our assumption is that the gravity-sensing mechanism is activated as soon as cells are exposed to any new gravitational environment. To study the molecular events, we exposed cells to simulated µG (SµG) for 15 min, 30 min, 1 h, 2 h, 4 h, and 8 h using a three-dimensional clinostat and made cell lysates, which were then analyzed by reverse phase protein arrays (RPPAs) using a panel of 453 different antibodies. By comparing the RPPA data from cells cultured at 1G with those of cells under SµG, we identified a total of 35 proteomic changes in the SµG samples and found that 20 of these changes took place, mostly transiently, within 30 min. In the 4 h and 8 h samples, there were only two RPPA changes, suggesting that the physiology of these cells is practically indistinguishable from that of cells cultured at 1 G. Among the proteins involved in the early proteomic changes were those that regulate cell motility and cytoskeletal organization. To see whether changes in gravitational environment indeed activate cell motility, we flipped the culture dish upside down (directional change in gravity vector) and studied cell migration and actin cytoskeletal organization. We found that compared with cells grown right-side up, upside-down cells transiently lost stress fibers and rapidly developed lamellipodia, which was supported by increased activity of Ras-related C3 botulinum toxin substrate 1 (Rac1). The upside-down cells also increased their migratory activity. It is possible that these early molecular and cellular events play roles in gravity sensing by mammalian cells. Our study also indicated that these early responses are transient, suggesting that cells appear to adapt physiologically to a new gravitational environment.


Assuntos
Actinas , Ausência de Peso , Actinas/metabolismo , Animais , Movimento Celular , Células Cultivadas , Mamíferos/metabolismo , Proteômica
6.
Heart Fail Clin ; 18(3): 361-374, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35718412

RESUMO

Myocardial dysfunction in patients with cancer is a major cause of morbidity and mortality. Cancer therapy-related cardiotoxicities are an important contributor to the development of cardiomyopathy in this patient population. Furthermore, cardiac AL amyloidosis, cardiac malignancies/metastases, accelerated atherosclerosis, stress cardiomyopathy, systemic and pulmonary hypertension are also linked to the development of myocardial dysfunction. Herein, we summarize current knowledge on the mechanisms of myocardial dysfunction in the setting of cancer and cancer-related therapies. Additionally, we briefly outline key recommendations on the surveillance and management of cancer therapy-related myocardial dysfunction based on the consensus of experts in the field of cardio-oncology.


Assuntos
Amiloidose , Antineoplásicos , Cardiomiopatias , Neoplasias , Amiloidose/complicações , Antineoplásicos/efeitos adversos , Cardiomiopatias/induzido quimicamente , Cardiotoxicidade/etiologia , Humanos , Oncologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia
7.
Circulation ; 141(1): 42-66, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31887080

RESUMO

BACKGROUND: Sporadic aortic aneurysm and dissection (AAD), caused by progressive aortic smooth muscle cell (SMC) loss and extracellular matrix degradation, is a highly lethal condition. Identifying mechanisms that drive aortic degeneration is a crucial step in developing an effective pharmacologic treatment to prevent disease progression. Recent evidence has indicated that cytosolic DNA and abnormal activation of the cytosolic DNA sensing adaptor STING (stimulator of interferon genes) play a critical role in vascular inflammation and destruction. Here, we examined the involvement of this mechanism in aortic degeneration and sporadic AAD formation. METHODS: The presence of cytosolic DNA in aortic cells and activation of the STING pathway were examined in aortic tissues from patients with sporadic ascending thoracic AAD. The role of STING in AAD development was evaluated in Sting-deficient (Stinggt/gt) mice in a sporadic AAD model induced by challenging mice with a combination of a high-fat diet and angiotensin II. We also examined the direct effects of STING on SMC death and macrophage activation in vitro. RESULTS: In human sporadic AAD tissues, we observed the presence of cytosolic DNA in SMCs and macrophages and significant activation of the STING pathway. In the sporadic AAD model, Stinggt/gt mice showed significant reductions in challenge-induced aortic enlargement, dissection, and rupture in both the thoracic and abdominal aortic regions. Single-cell transcriptome analysis revealed that aortic challenge in wild-type mice induced the DNA damage response, the inflammatory response, dedifferentiation and cell death in SMCs, and matrix metalloproteinase expression in macrophages. These changes were attenuated in challenged Stinggt/gt mice. Mechanistically, nuclear and mitochondrial DNA damage in SMCs and the subsequent leak of DNA to the cytosol activated STING signaling, which induced cell death through apoptosis and necroptosis. In addition, DNA from damaged SMCs was engulfed by macrophages in which it activated STING and its target interferon regulatory factor 3, which directly induced matrix metalloproteinase-9 expression. We also found that pharmacologically inhibiting STING activation partially prevented AAD development. CONCLUSIONS: Our findings indicate that the presence of cytosolic DNA and subsequent activation of cytosolic DNA sensing adaptor STING signaling represent a key mechanism in aortic degeneration and that targeting STING may prevent sporadic AAD development.


Assuntos
Dissecção Aórtica/metabolismo , Ruptura Aórtica/metabolismo , Citosol/metabolismo , DNA/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Dissecção Aórtica/genética , Dissecção Aórtica/patologia , Animais , Ruptura Aórtica/genética , Ruptura Aórtica/patologia , Citosol/patologia , DNA/genética , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout
8.
J Thromb Thrombolysis ; 51(4): 884-889, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33079380

RESUMO

One of the major mechanisms of action of chemo-radiation is to induce cellular senescence, which exerts crucial roles in age-related pathology. The concept of senescence is evolved, and the novel understanding of senescence-associated reprogramming/stemness has emerged. This new concept emphasizes senescence as not only cell cycle arrest but describes that subsets of senescent cells induced by chemotherapy can re-enter cell cycles, proliferate rapidly, and acquire "stemness" status. Cancer therapeutics, including chemo-radiation triggers toxicity effects through damaging mitochondria, primarily through the upregulation of mtROS production leading to subsequent mtDNA and telomeric DNA damage elicitng DNA damage responses (DDR). The ultimate goal of this review is to highlight the new concept of senescence-associated stemness that is induced by cancer treatment and its adverse effects on the vascular system. We will describe how chemo-radiation exerts toxicity effects by simultaneously producing reactive oxygen species in mitochondria and promoting DDR in the nucleus. We discuss the potential of clinical targeting poly (ADP-ribose) polymerase which might prevent downstream mitochondrial dysfunction and confer protection to cancer survivors. Overall we emphasize the importance of recognizing the consequences of cardio-toxic effects of several cancer treatments and therefore developing personalized therapeutic approaches to screen for inflammatory and cardiac testing for better patient survival.


Assuntos
Mitocôndrias , Neoplasias , Senescência Celular , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio
9.
J Biol Chem ; 294(25): 9901-9910, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31076505

RESUMO

Healthy kidney structure and environment rely on epithelial integrity and interactions between epithelial cells and other kidney cells. The Ser/Thr kinase 90 kDa ribosomal protein S6 kinase 1 (p90RSK) belongs to a protein family that regulates many cellular processes, including cell motility and survival. p90RSK is predominantly expressed in the kidney, but its possible role in chronic kidney disease (CKD) remains largely unknown. Here, we found that p90RSK expression is dramatically activated in a classic mouse obstructive chronic kidney disease model, largely in the interstitial FSP-1-positive fibroblasts. We generated FSP-1-specific p90RSK transgenic mouse (RSK-Tg) and discovered that these mice, after obstructive injury, display significantly increased fibrosis and enhanced tubular epithelial damage compared with their wt littermates (RSK-wt), indicating a role of p90RSK in fibroblast-epithelial communication. We established an in vitro fibroblast-epithelial coculture system with primary kidney fibroblasts from RSK-Tg and RSK-wt mice and found that RSK-Tg fibroblasts consistently produce excessive H2O2 causing epithelial oxidative stress and inducing nuclear translocation of the signaling protein ß-catenin. Epithelial accumulation of ß-catenin, in turn, promoted epithelial apoptosis by activating the transcription factor forkhead box class O1 (FOXO1). Of note, blockade of reactive oxygen species (ROS) or ß-catenin or FOXO1 activity abolished fibroblast p90RSK-mediated epithelial apoptosis. These results make it clear that p90RSK promotes kidney fibrosis by inducing fibroblast-mediated epithelial apoptosis through ROS-mediated activation of ß-catenin/FOXO1 signaling pathway.


Assuntos
Células Epiteliais/patologia , Fibroblastos/patologia , Fibrose/patologia , Nefropatias/patologia , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Animais , Apoptose , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/genética , Transdução de Sinais
10.
Circulation ; 139(9): 1199-1216, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30586719

RESUMO

BACKGROUND: The incidence of cardiovascular disease is higher in HIV-positive (HIV+) patients than it is in the average population, and combination antiretroviral therapy (cART) is a recognized risk factor for cardiovascular disease. However, the molecular mechanisms that link cART and cardiovascular disease are currently unknown. Our study explores the role of the activation of p90RSK, a reactive oxygen species-sensitive kinase, in engendering senescent phenotype in macrophages and accelerating atherogenesis in patients undergoing cART. METHODS: Peripheral whole blood from cART-treated HIV+ individuals and nontreated HIV-negative individuals was treated with H2O2 (200 µmol/L) for 4 minutes, and p90RSK activity in CD14+ monocytes was measured. Plaque formation in the carotids was also analyzed in these individuals. Macrophage senescence was determined by evaluating their efferocytotic ability, antioxidation-related molecule expression, telomere length, and inflammatory gene expression. The involvement of p90RSK-NRF2 signaling in cART-induced senescence was assessed by p90RSK-specific inhibitor (FMK-MEA) or dominant-negative p90RSK (DN-p90RSK) and NRF2 activator (NRF2A). Further, the severity of atherosclerosis was determined in myeloid cell-specific wild-type and DN-p90RSK transgenic mice. RESULTS: Monocytes from HIV+ patients exhibited higher levels of p90RSK activity and were also more sensitive to reactive oxygen species than monocytes from HIV-negative individuals. A multiple linear regression analysis involving cART, Reynolds cardiovascular risk score, and basal p90RSK activity revealed that cART and basal p90RSK activity were the 2 significant determinants of plaque formation. Many of the antiretroviral drugs individually activated p90RSK, which simultaneously triggered all components of the macrophage senescent phenotype. cART inhibited antioxidant response element reporter activity via ERK5 S496 phosphorylation. NRF2A reversed the H2O2-induced overactivation of p90RSK in cART-treated macrophages by countering the induction of senescent phenotype. Last, the data obtained from our gain- or loss-of-function mice conclusively showed the crucial role of p90RSK in inducing senescent phenotype in macrophages and atherogenesis. CONCLUSIONS: cART increased monocyte/macrophage sensitivity to reactive oxygen species- in HIV+ individuals by suppressing NRF2-ARE activity via p90RSK-mediated ERK5 S496 phosphorylation, which coordinately elicited senescent phenotypes and proinflammatory responses. As such, our report underscores the importance of p90RSK regulation in monocytes/macrophages as a viable biomarker and therapeutic target for preventing cardiovascular disease, especially in HIV+ patients treated with cART.


Assuntos
Senescência Celular , Soropositividade para HIV/metabolismo , HIV-1 , Macrófagos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Antirretrovirais/administração & dosagem , Feminino , Soropositividade para HIV/tratamento farmacológico , Soropositividade para HIV/genética , Soropositividade para HIV/patologia , Humanos , Macrófagos/patologia , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa