Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36772632

RESUMO

Distributed fiber optic sensors (DFOS) have become a new method for continuously monitoring infrastructure status. However, the fiber's fragility and the installation's complexity are some of the main drawbacks of this monitoring approach. This paper aims to overcome this limitation by embedding a fiber optic sensor into a textile for a faster and easier installation process. To demonstrate its feasibility, the smart textile was installed on a pedestrian bridge at the University of Massachusetts Lowell. In addition, dynamic strain data were collected for two different years (2021 and 2022) using Optical Frequency Domain Reflectometry (OFDR) and compared, to determine the variability of the data after one year of installation. We determined that no significant change was observed in the response pattern, and the difference between the amplitude of both datasets was 14% (one person jumping on the bridge) and 43% (two people jumping) at the first frequency band. This result shows the proposed system's functionality after one year of installation, as well as its potential use for traffic monitoring.

2.
Sensors (Basel) ; 23(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37430772

RESUMO

Distributed structure health monitoring has been a hot research topic in recent years, and optic fiber sensors are largely developed for the advantages of high sensitivity, better spatial resolution, and small sensor size. However, the limitation of fibers in installation and reliability has become one of the major drawbacks of this technology. This paper presents a fiber optic sensing textile and a new installation method inside bridge girders to address those shortcomings in fiber sensing systems. The sensing textile was utilized to monitor strain distribution in the Grist Mill Bridge located in Maine based on Brillouin Optical Time Domain Analysis (BOTDA). A modified slider was developed to increase the efficiency of installation in the confined bridge girders. The bridge girder's strain response was successfully recorded by the sensing textile during the loading tests that involved four trucks on the bridge. The sensing textile demonstrated the capability to differentiate separated loading locations. These results demonstrate a new way of installing fiber optic sensors and the potential applications of fiber optic sensing textiles in structural health monitoring.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa