Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
J Biol Chem ; 298(10): 102392, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988643

RESUMO

Enzymes involved in Staphylococcus aureus amino acid metabolism have recently gained traction as promising targets for the development of new antibiotics, however, not all aspects of this process are understood. The ATP-grasp superfamily includes enzymes that predominantly catalyze the ATP-dependent ligation of various carboxylate and amine substrates. One subset, ʟ-amino acid ligases (LALs), primarily catalyze the formation of dipeptide products in Gram-positive bacteria, however, their involvement in S. aureus amino acid metabolism has not been investigated. Here, we present the characterization of the putative ATP-grasp enzyme (SAOUHSC_02373) from S. aureus NCTC 8325 and its identification as a novel LAL. First, we interrogated the activity of SAOUHSC_02373 against a panel of ʟ-amino acid substrates. As a result, we identified SAOUHSC_02373 as an LAL with high selectivity for ʟ-aspartate and ʟ-methionine substrates, specifically forming an ʟ-aspartyl-ʟ-methionine dipeptide. Thus, we propose that SAOUHSC_02373 be assigned as ʟ-aspartate-ʟ-methionine ligase (LdmS). To further understand this unique activity, we investigated the mechanism of LdmS by X-ray crystallography, molecular modeling, and site-directed mutagenesis. Our results suggest that LdmS shares a similar mechanism to other ATP-grasp enzymes but possesses a distinctive active site architecture that confers selectivity for the ʟ-Asp and ʟ-Met substrates. Phylogenetic analysis revealed LdmS homologs are highly conserved in Staphylococcus and closely related Gram-positive Firmicutes. Subsequent genetic analysis upstream of the ldmS operon revealed several trans-acting regulatory elements associated with control of Met and Cys metabolism. Together, these findings support a role for LdmS in Staphylococcal sulfur amino acid metabolism.


Assuntos
Proteínas de Bactérias , Cisteína , Metionina , Peptídeo Sintases , Staphylococcus aureus , Trifosfato de Adenosina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Dipeptídeos/biossíntese , Metionina/química , Metionina/metabolismo , Filogenia , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Peptídeo Sintases/química , Peptídeo Sintases/classificação , Peptídeo Sintases/genética , Cisteína/química , Cisteína/metabolismo
2.
Chembiochem ; 24(20): e202300453, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37584529

RESUMO

The ability to photochemically activate a drug, both when and where needed, requires optimisation of the difference in biological activity between each isomeric state. As a step to this goal, we report small-molecule- and peptide-based inhibitors of the same protease-trypsin-to better understand how photoswitchable drugs interact with their biological target. The best peptidic inhibitor displayed a more than fivefold difference in inhibitory activity between isomeric states, whereas the best small-molecule inhibitor only showed a 3.4-fold difference. Docking and molecular modelling suggest this result is due to a large change in 3D structure in the key binding residues of the peptidic inhibitor upon isomerisation; this is not observed for the small-molecule inhibitor. Hence, we demonstrate that significant structural changes in critical binding motifs upon irradiation are essential for maximising the difference in biological activity between isomeric states. This is an important consideration in the design of future photoswitchable drugs for clinical applications.


Assuntos
Peptídeos Cíclicos , Peptídeos , Tripsina/metabolismo , Modelos Moleculares , Peptídeos/farmacologia , Peptídeos Cíclicos/química , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química
3.
Chemistry ; 29(46): e202301487, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37309073

RESUMO

A novel strategy to treat Staphylococcus aureus (S. aureus) skin infections is presented, where UV light is used to facilitate concomitant light-controlled activation and delivery of an antimicrobial therapeutic agent. Specifically, a new photoswitchable gramicidin S analogue was immobilized onto a polymeric wearable patch via a photocleavable linker that undergoes photolysis at the same wavelength of light required for activation of the peptide. Unlike toxic gramicidin S, the liberated active photoswitchable peptide exhibits antimicrobial activity against S. aureus while being ostensibly non-haemolytic to red blood cells. Moreover, irradiation with visible light switches off the antimicrobial properties of the peptide within seconds, presenting an ideal strategy to regulate antibiotic activity for localized bacterial infections with the potential to mitigate resistance.


Assuntos
Anti-Infecciosos , Dispositivos Eletrônicos Vestíveis , Gramicidina/química , Peptídeos Antimicrobianos , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos , Anti-Infecciosos/farmacologia
4.
Bioorg Med Chem ; 96: 117509, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948922

RESUMO

d-Alanine-d-alanine ligase (Ddl) catalyses the ATP-dependent formation of d-Ala-d-Ala, a critical component in bacterial cell wall biosynthesis and is a validated target for new antimicrobial agents. Here, we describe the structure-guided design, synthesis, and evaluation of ATP-competitive N-acyl-substituted sulfamides 27-36, 42, 46, 47 as inhibitors of Staphylococcus aureus Ddl (SaDdl). A crystal structure of SaDdl complexed with ATP and d-Ala-d-Ala (PDB: 7U9K) identified ATP-mimetic 8 as an initial scaffold for further inhibitor design. Evaluation of 8 in SaDdl enzyme inhibition assays revealed the ability to reduce enzyme activity to 72 ± 8 % (IC50 = 1.6 mM). The sulfamide linker of 8 was extended with 2-(4-methoxyphenyl)ethanol to give 29, to investigate further interactions with the d-Ala pocket of SaDdl, as predicted by molecular docking. This compound reduced enzyme activity to 89 ± 1 %, with replacement of the 4-methoxyphenyl group in 29 with alternative phenyl substituents (27, 28, 31-33, 35, 36) failing to significantly improve on this (80-89 % remaining enzyme activity). Exchanging these phenyl substituents with selected heterocycles (42, 46, 47) did improve activity, with the most active compound (42) reducing SaDdl activity to 70 ± 1 % (IC50 = 1.7 mM), which compares favourably to the FDA-approved inhibitor d-cycloserine (DCS) (IC50 = 0.1 mM). To the best of our knowledge, this is the first reported study of bisubstrate SaDdl inhibitors.


Assuntos
Alanina , Peptídeo Sintases , Simulação de Acoplamento Molecular , Peptídeo Sintases/química , Trifosfato de Adenosina/química
5.
J Biol Chem ; 296: 100773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33984330

RESUMO

The human sliding clamp, Proliferating Cell Nuclear Antigen (hPCNA), interacts with over 200 proteins through a conserved binding motif, the PIP-box, to orchestrate DNA replication and repair. It is not clear how changes to the features of a PIP-box modulate protein binding and thus how they fine-tune downstream processes. Here, we present a systematic study of each position within the PIP-box to reveal how hPCNA-interacting peptides bind with drastically varied affinities. We synthesized a series of 27 peptides derived from the native protein p21 with small PIP-box modifications and another series of 19 peptides containing PIP-box binding motifs from other proteins. The hPCNA-binding affinity of all peptides, characterized as KD values determined by surface plasmon resonance, spanned a 4000-fold range, from 1.83 nM to 7.59 µM. The hPCNA-bound peptide structures determined by X-ray crystallography and modeled computationally revealed intermolecular and intramolecular interaction networks that correlate with high hPCNA affinity. These data informed rational design of three new PIP-box sequences, testing of which revealed the highest affinity hPCNA-binding partner to date, with a KD value of 1.12 nM, from a peptide with PIP-box QTRITEYF. This work showcases the sequence-specific nuances within the PIP-box that are responsible for high-affinity hPCNA binding, which underpins our understanding of how nature tunes hPCNA affinity to regulate DNA replication and repair processes. In addition, these insights will be useful to future design of hPCNA inhibitors.


Assuntos
Peptídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Biblioteca de Peptídeos , Peptídeos/química , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica , Mapas de Interação de Proteínas , Proteínas/química , Proteínas/metabolismo
6.
Med Res Rev ; 41(1): 435-463, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075148

RESUMO

Nitric oxide (NO) is a ubiquitous, volatile, cellular signaling molecule that operates across a wide physiological concentration range (pM-µM) in different tissues. It is a highly diffusible messenger and intermediate in various metabolic pathways. NO plays a pivotal role in maintaining optimum cardiovascular function, particularly by regulating vascular tone and blood flow. This review highlights the need for accurate, real-time bioimaging of NO in clinical diagnostic, therapeutic, monitoring, and theranostic applications within the cardiovascular system. We summarize electrochemical, optical, and nanoscale sensors that allow measurement and imaging of NO, both directly and indirectly via surrogate measurements. The physical properties of NO render it difficult to accurately measure in tissues using direct methods. There are also significant limitations associated with the NO metabolites used as surrogates to indirectly estimate NO levels. All these factors added to significant variability in the measurement of NO using available methodology have led to a lack of sensors and imaging techniques of clinical applicability in relevant vascular pathologies such as atherosclerosis and ischemic heart disease. Challenges in applying current methods to biomedical and clinical translational research, including the wide physiological range of NO and limitations due to the characteristics and toxicity of the sensors are discussed, as are potential targets and modifications for future studies. The development of biocompatible nanoscale sensors for use in combination with existing clinical imaging modalities provides a feasible opportunity for bioimaging NO within the cardiovascular system.


Assuntos
Aterosclerose , Sistema Cardiovascular , Humanos , Óxido Nítrico , Transdução de Sinais
7.
Chembiochem ; 22(17): 2711-2720, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34107164

RESUMO

An i-i+4 or i-i+3 bimane-containing linker was introduced into a peptide known to target Estrogen Receptor alpha (ERα), in order to stabilise an α-helical geometry. These macrocycles were studied by CD and NMR to reveal the i-i+4 constrained peptide adopts a 310 -helical structure in solution, and an α-helical conformation on interaction with the ERα coactivator recruitment surface in silico. An acyclic bimane-modified peptide is also helical, when it includes a tryptophan or tyrosine residue; but is significantly less helical with a phenylalanine or alanine residue, which indicates such a bimane modification influences peptide structure in a sequence dependent manner. The fluorescence intensity of the bimane appears influenced by peptide conformation, where helical peptides displayed a fluorescence increase when TFE was added to phosphate buffer, compared to a decrease for less helical peptides. This study presents the bimane as a useful modification to influence peptide structure as an acyclic peptide modification, or as a side-chain constraint to give a macrocycle.


Assuntos
Cisteína/química , Peptídeos/química , Sequência de Aminoácidos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Dicroísmo Circular , Receptor alfa de Estrogênio/química , Espectroscopia de Ressonância Magnética , Peptídeos/síntese química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Espectrometria de Fluorescência
8.
Bioorg Med Chem Lett ; 41: 128031, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33839250

RESUMO

The solvatochromic amino-acids 4-DMNA or 4-DAPA, were separately introduced at position 147, 150 or 151 of a short p21 peptide (141-155) known to bind sliding clamp protein PCNA. The ability of these peptides, 1a-3a and 1b-3b, to act as a turn-on fluorescent sensor for PCNA was then investigated. The 4-DMNA-containing peptides (1a-3a) displayed up to a 40-fold difference in fluorescence between a polar (Tris buffer) and a hydrophobic solvent (dioxane with 5 mM 18-crown-6), while the 4-DAPA-containing peptides (1b-3b) displayed a significantly enhanced (300-fold) increase in fluorescence from Tris buffer to dioxane with 18-crown-6. SPR analysis of the peptides against PCNA revealed that the 151-substituted peptides 3a and 3b interacted specifically with PCNA, with KD values of 921 nM and 1.28 µM, respectively. Analysis of the fluorescence of these peptides in the presence of increasing concentrations of PCNA revealed a 10-fold change in fluorescence for 3a at 2.5 equivalents of PCNA, compared to only a 3.5-fold change in fluorescence for 3b. Peptide 3a is an important lead for development of a PCNA-selective turn-on fluorescent sensor for application as a cell proliferation sensor to investigate diseases such as cancer.


Assuntos
Fluorescência , Corantes Fluorescentes/química , Peptídeos/química , Antígeno Nuclear de Célula em Proliferação/química , Corantes Fluorescentes/síntese química , Humanos , Estrutura Molecular , Peptídeos/síntese química , Espectrometria de Fluorescência
9.
Biochem J ; 477(11): 2039-2054, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32427336

RESUMO

Amyloid beta peptide (Aß42) aggregation in the brain is thought to be responsible for the onset of Alzheimer's disease, an insidious condition without an effective treatment or cure. Hence, a strategy to prevent aggregation and subsequent toxicity is crucial. Bio-inspired peptide-based molecules are ideal candidates for the inhibition of Aß42 aggregation, and are currently deemed to be a promising option for drug design. In this study, a hexapeptide containing a self-recognition component unique to Aß42 was designed to mimic the ß-strand hydrophobic core region of the Aß peptide. The peptide is comprised exclusively of D-amino acids to enhance specificity towards Aß42, in conjunction with a C-terminal disruption element to block the recruitment of Aß42 monomers on to fibrils. The peptide was rationally designed to exploit the synergy between the recognition and disruption components, and incorporates features such as hydrophobicity, ß-sheet propensity, and charge, that all play a critical role in the aggregation process. Fluorescence assays, native ion-mobility mass spectrometry (IM-MS) and cell viability assays were used to demonstrate that the peptide interacts with Aß42 monomers and oligomers with high specificity, leading to almost complete inhibition of fibril formation, with essentially no cytotoxic effects. These data define the peptide-based inhibitor as a potentially potent anti-amyloid drug candidate for this hitherto incurable disease.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Agregação Patológica de Proteínas , Humanos , Espectrometria de Mobilidade Iônica , Conformação Proteica em Folha beta
10.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34639185

RESUMO

Local activation of an anti-cancer drug when and where needed can improve selectivity and reduce undesirable side effects. Photoswitchable drugs can be selectively switched between active and inactive states by illumination with light; however, the clinical development of these drugs has been restricted by the difficulty in delivering light deep into tissue where needed. Optical fibres have great potential for light delivery in vivo, but their use in facilitating photoswitching in anti-cancer compounds has not yet been explored. In this paper, a photoswitchable chemotherapeutic is switched using an optical fibre, and the cytotoxicity of each state is measured against HCT-116 colorectal cancer cells. The performance of optical-fibre-enabled photoswitching is characterised through its dose response. The UV-Vis spectra confirm light delivered by an optical fibre effectively enables photoswitching. The activated drug is shown to be twice as effective as the inactive drug in causing cancer cell death, characterised using an MTT assay and fluorescent microscopy. This is the first study in which a photoswitchable anti-cancer compound is switched using an optical fibre and demonstrates the feasibility of using optical fibres to activate photoswitchable drugs for potential future clinical applications.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Dimetil Sulfóxido/química , Fibras Ópticas/estatística & dados numéricos , Antineoplásicos/química , Sobrevivência Celular , Humanos , Células Tumorais Cultivadas
11.
Chembiochem ; 21(4): 442-450, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31247123

RESUMO

Proliferating cell nuclear antigen (PCNA) is an excellent inhibition target to shut down highly proliferative cells and thereby develop a broad-spectrum cancer therapeutic. It interacts with a wide variety of proteins through a conserved motif referred to as the PCNA-interacting protein (PIP) box. There is large sequence diversity between high-affinity PCNA binding partners, but with conservation of the binding structure-a well-defined 310 -helix. Herein, all current PIP-box peptides crystallised with human PCNA are collated to reveal common trends between binding structure and affinity. Key intra- and intermolecular hydrogen-bonding networks that stabilise the 310 -helix of PIP-box partners are highlighted and related back to the canonical PIP-box motif. High correlation with the canonical PIP-box sequence does not directly afford high affinity. Instead, we summarise key interactions that stabilise the binding structure that leads to enhanced PCNA binding affinity. These interactions also implicate the "non-conserved" residues within the PIP-box that have previously been overlooked. Such insights will allow a more directed approach to develop therapeutic PCNA inhibitors.


Assuntos
Peptídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação , Humanos , Modelos Moleculares , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Domínios Proteicos
12.
Chembiochem ; 21(23): 3423-3432, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32700428

RESUMO

The thiol-selective fluorescent imaging agent, dibromobimane, has been repurposed to crosslink cysteine- and homocysteine-containing peptides, with the resulting bimane linker acting as both a structural constraint and a fluorescent tag. Macrocyclisation was conducted on nine short peptides containing two cysteines and/or homocysteines, both on-resin and in buffered aqueous solution, to give macrocycles ranging in size from 16 (i,i+2) to 31 (i,i+7) atoms. The structures were defined by CD, NMR structure calculations by using Xplor-NIH, NMR secondary shift and JHαNH analyses to reveal helical structure in the i,i+4 (1, 2), and i,i+3 (5) constrained peptides. Cellular-uptake studies were conducted with three of the macrocycles. Subsequent confocal imaging revealed punctate fluorescence within the cytosol indicative of peptides trapped in endocytic vesicles. These studies demonstrate that dibromobimane is an effective tool for defining secondary structure within short peptides, whilst simultaneously introducing a fluorescent tag suitable for common cell-based experiments.


Assuntos
Compostos Bicíclicos com Pontes/química , Corantes Fluorescentes/química , Imagem Óptica , Peptídeos/química , Animais , Corantes Fluorescentes/síntese química , Camundongos , Conformação Molecular , Células NIH 3T3 , Espectrometria de Fluorescência , Compostos de Sulfidrila/química
13.
Bioorg Med Chem Lett ; 30(11): 127140, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32247730

RESUMO

A prodrug based on a known antibacterial compound is reported to target Staphylococcus aureus and Escherichia coli under reductive conditions. The prodrug was prepared by masking the N-terminus and side chain amines of a component lysine residue as 4-nitrobenzyl carbamates. Activation to liberate the antibacterial was demonstrated on treatment with a model reductant, tin(II) chloride. The bioactivity of 1 was confirmed in antibacterial susceptibility assays whereas prodrug 2 was inactive.


Assuntos
Antibacterianos/química , Pró-Fármacos/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Compostos de Estanho/farmacologia
14.
Phys Chem Chem Phys ; 22(16): 8409-8417, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32270834

RESUMO

Metalloproteins are crucial to many biological processes, such as photosynthesis, respiration, and efficient electron transport. Zinc is the most common transition metal found in proteins and is critical for structure, function and stability, however the effects from the electronic properties of a bound zinc ion on electron transfer are not clearly defined. Here, a series of ß-strand and 310-helical peptides, capable of binding Zn2+via suitably positioned His residues, was synthesized and their ability to undergo electron transfer in the presence and absence of Zn2+ studied by electrochemical and computational means. The ß-strand peptide was shown to be conformationally pre-organized, with this geometry maintained on complexation with zinc. Electrochemical studies show a significant increase in charge transport, following binding of the zinc ion to the ß-strand peptide. In contrast, complexation of zinc to the helical peptide disrupts the intramolecular hydrogen bonding network known to facilitate electron transfer and leads to a loss of secondary structure, resulting in a decrease in charge transfer. These experimental and computational studies reveal an interplay, which demonstrates that bound zinc enhances charge transfer by changing the electronic properties of the peptide, and not simply by influencing secondary structure.


Assuntos
Cátions/química , Modelos Químicos , Mimetismo Molecular , Peptídeos/química , Proteínas/química , Oxirredução
15.
Reprod Fertil Dev ; 32(14): 1223-1238, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33027608

RESUMO

Oocyte activation, the dynamic transformation of an oocyte into an embryo, is largely driven by Ca2+ oscillations that vary in duration and amplitude across species. Previous studies have analysed intraoocyte Ca2+ oscillations in the absence of the oocyte's supporting cumulus cells. Therefore, it is unknown whether cumulus cells also produce an ionic signal that reflects fertilisation success. Time-lapse confocal microscopy and image analysis on abattoir-derived cattle cumulus-oocyte complexes coincubated with spermatozoa revealed a distinct discharge of fluorescence from the cumulus vestment. This study demonstrated that this Ca2+ fluorescence discharge was an artefact induced by the imaging procedure independently of oocyte activation success. The fluorescence discharge was a direct result of cumulus cell membrane integrity loss, and future studies should consider the long-term effect of fluorescent labels on cells in time-lapse imaging. However, this study also demonstrated that the distinctive pattern of a coordinated fluorescence discharge was associated with both the presence of spermatozoa and subsequent embryo development to the morula stage, which was affected by Ca2+ chelation and a reduction in the active efflux of the fluorophore. This indicates that the cumulus vestment may have a relationship with oocyte activation at and beyond fertilisation that requires further investigation.


Assuntos
Cálcio/metabolismo , Células do Cúmulo/metabolismo , Microscopia Confocal , Oócitos/metabolismo , Imagem com Lapso de Tempo , Animais , Bovinos , Feminino , Fluorescência
16.
Angew Chem Int Ed Engl ; 59(50): 22554-22562, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32851761

RESUMO

The majority of the protein structures have been elucidated under equilibrium conditions. The aim herein is to provide a better understanding of the dynamic behavior inherent to proteins by fabricating a label-free nanodevice comprising a single-peptide junction to measure real-time conductance, from which their structural dynamic behavior can be inferred. This device contains an azobenzene photoswitch for interconversion between a well-defined cis, and disordered trans isomer. Real-time conductance measurements revealed three distinct states for each isomer, with molecular dynamics simulations showing each state corresponds to a specific range of hydrogen bond lengths within the cis isomer, and specific dihedral angles in the trans isomer. These insights into the structural dynamic behavior of peptides may rationally extend to proteins. Also demonstrated is the capacity to modulate conductance which advances the design and development of bioinspired electronic nanodevices.


Assuntos
Compostos Azo/química , Simulação de Dinâmica Molecular , Nanopartículas/química , Nanotecnologia , Peptídeos Cíclicos/química , Conformação Molecular , Peptídeos Cíclicos/síntese química , Processos Fotoquímicos , Estereoisomerismo , Fatores de Tempo
17.
Mol Pharmacol ; 95(5): 573-583, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858164

RESUMO

This is the first work to use a newly designed Li+-selective photoswitchable probe Sabrina Heng Lithium (SHL) in living colon cancer cells to noninvasively monitor cation channel activity in real time by the appearance of lithium hot spots detected by confocal microscopy. Punctate Li+ hot spots are clustered in the lamellipodial leading edges of HT29 human colon cancer cells and are colocalized with aquaporin-1 (AQP1) channels. AQP1 is a dual water and cyclic-nucleotide-gated cation channel located in lamellipodia and is essential for rapid cell migration in a subset of aggressive cancers. Both the Li+ hot spots and cell migration are blocked in HT29 cells by the AQP1 ion channel antagonist AqB011. In contrast, Li+ hot spots are not evident in a poorly migrating colon cancer cell line, SW620, which lacks comparable membrane expression of AQP1. Knockdown of AQP1 by RNA interference in HT29 cells significantly impairs Li+ hot spot activity. The SHL probe loaded in living cells shows signature chemical properties of ionic selectivity and reversibility. Dynamic properties of the Li+ hot spots, turning on and off, are confirmed by time-lapse imaging. SHL is a powerful tool for evaluating cation channel function in living cells in real time, with particular promise for studies of motile cells or interlinked networks not easily analyzed by electrophysiological methods. The ability to reset SHL by photoswitching allows monitoring of dynamic signals over time. Future applications of the Li+ probe could include high-throughput optical screening for discovering new classes of channels, or finding new pharmacological modulators for nonselective cation channels.


Assuntos
Movimento Celular/fisiologia , Neoplasias do Colo/metabolismo , Canais Iônicos/metabolismo , Lítio/administração & dosagem , Animais , Aquaporina 1/metabolismo , Linhagem Celular Tumoral , GMP Cíclico/metabolismo , Células HT29 , Humanos , Ativação do Canal Iônico/fisiologia , Oócitos/metabolismo , Oócitos/fisiologia , Transdução de Sinais/fisiologia , Xenopus laevis/metabolismo , Xenopus laevis/fisiologia
18.
Acc Chem Res ; 51(9): 2237-2246, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30192512

RESUMO

Molecular electronics is at the forefront of interdisciplinary research, offering a significant extension of the capabilities of conventional silicon-based technology as well as providing a possible stand-alone alternative. Bio-inspired molecular electronics is a particularly intriguing paradigm, as charge transfer in proteins/peptides, for example, plays a critical role in the energy storage and conversion processes for all living organisms. However, the structure and conformation of even the simplest protein is extremely complex, and therefore, synthetic model peptides comprising well-defined geometry and predetermined functionality are ideal platforms to mimic nature for the elucidation of fundamental biological processes while also enhancing the design and development of single-peptide electronic components. In this Account, we first present intramolecular electron transfer within two synthetic peptides, one with a well-defined helical conformation and the other with a random geometry, using electrochemical techniques and computational simulations. This study reveals two definitive electron transfer pathways (mechanisms), the natures of which are dependent on secondary structure. Following on from this, electron transfer within a series of well-defined helical peptides, constrained by either Huisgen cycloaddition, ring-closing metathesis, or a lactam bridge, was determined. The electrochemical results indicate that each constrained peptide, in contrast to a linear counterpart, exhibits a remarkable shift of the formal potential to the positive (>460 mV) and a significant reduction of the electron transfer rate constant (up to 15-fold), which represent two distinct electronic "on/off" states. High-level calculations demonstrate that the additional backbone rigidity provided by the side-bridge constraints leads to an increased reorganization energy barrier, which impedes the vibrational fluctuations necessary for efficient intramolecular electron transfer through the peptide backbone. Further calculations reveal a clear mechanistic transition from hopping to superexchange (tunneling) stemming from side-bridge gating. We then extended our research to fine-tuning of the electronic properties of peptides through both structural and chemical manipulation, to reveal an interplay between electron-rich side chains and backbone rigidity on electron transfer. Further to this, we explored the possibility that the side-bridge constraints present in our synthetic peptides provide an additional electronic transport pathway, which led to the discovery of two distinct forms of quantum interferometer. The effects of destructive quantum interference appear essentially through both the backbone and an alternative tunneling pathway provided by the side bridge in the constrained ß-strand peptide, as evidenced by a correlation between electrochemical measurements and conductance simulations for both linear and constrained ß-strand peptides. In contrast, an interplay between quantum interference effects and vibrational fluctuations is revealed in the linear and constrained 310-helical peptides. Collectively, these exciting findings augment our fundamental knowledge of charge transfer dynamics and kinetics in peptides and also open up new avenues to design and develop functional bio-inspired electronic devices, such as on/off switches and quantum interferometers, for practical applications in molecular electronics.


Assuntos
Elétrons , Peptídeos/química , Eletricidade , Técnicas Eletroquímicas/métodos , Eletrônica/métodos , Cinética , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
19.
Chemistry ; 25(3): 854-862, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30414294

RESUMO

A new spiropyran-based stimuli-responsive delivery system is fabricated. It encapsulates and then releases an extraneous compound in response to elevated levels of Zn2+ , a critical factor in cell apoptosis. A C12 -alkyl substituent on the spiropyran promotes self-assembly into a micelle-like nanocarrier in aqueous media, with nanoprecipitation and encapsulation of added payload. Zn2+ binding occurs to an appended bis(2-pyridylmethyl)amine group at biologically relevant micromolar concentration. This leads to switching of the spiropyran (SP) isomer to the strongly fluorescent ring opened merocyanine-Zn2+ (MC-Zn2+ ) complex, with associated expansion of the nanocarriers to release the encapsulated payload. Payload release is demonstrated in solution and in HEK293 cells by encapsulation of a blue fluorophore, 7-hydroxycoumarin, and monitoring its release using fluorescence spectroscopy and microscopy. Furthermore, the use of the nanocarriers to deliver a caspase inhibitor, Azure B, into apoptotic cells in response to an elevated Zn2+ concentration is demonstrated. This then inhibits intracellular caspase activity, as evidenced by confocal microscopy and in real-time by time-lapsed microscopy. Finally, the nanocarriers are shown to release an encapsulated proteasome inhibitor (5) in Zn2+ -treated breast carcinoma cell line models. This then inhibits intracellular proteasome and induces cytotoxicity to the carcinoma cells.

20.
Bioorg Med Chem Lett ; 29(3): 396-399, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30579793

RESUMO

A series of dipeptide aldehydes containing different N-terminal heterocycles was prepared and assayed in vitro against α-chymotrypsin to ascertain the importance of the heterocycle in maintaining a ß-strand geometry while also providing a hydrogen bond donor equivalent to the backbone amide nitrogen of the surrogate amino acid. The dipeptide containing a pyrrole constraint (10) was the most potent inhibitor, with >30-fold improved activity over dipeptides which lacked a nitrogen hydrogen bond donor (namely thiophene 11, furan 12 and pyridine 13). Molecular docking studies of 10 bound to α-chymotrypsin demonstrates a hydrogen bond between the pyrrole nitrogen donor and the backbone carbonyl of Gly216 located in the S3 pocket which is proposed to be critical for overall binding.


Assuntos
Aldeídos/farmacologia , Quimotripsina/antagonistas & inibidores , Dipeptídeos/farmacologia , Pirróis/farmacologia , Inibidores de Serina Proteinase/farmacologia , Aldeídos/química , Quimotripsina/química , Quimotripsina/metabolismo , Dipeptídeos/química , Relação Dose-Resposta a Droga , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirróis/síntese química , Pirróis/química , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa