RESUMO
Compensatory growth (CG) is accelerated growth that occurs when food availability increases after food restriction. This rapid growth may be associated with sublethal consequences. In this study, we investigated the effects of food restriction and subsequent realimentation and CG on bone structure in juvenile green turtles (Chelonia mydas). Turtles were fed ad libitum food for 12 weeks (AL), restricted food for 12 weeks (R), or restricted food for 5 weeks followed by ad libitum food for 7 weeks (R-AL). R-AL turtles demonstrated partial CG via enhanced food conversion efficiency (FCE) upon realimentation. After the 12th week, gross morphology (GM), microarchitecture, and mineralization of the right humerus of each turtle were analyzed. Many GM measurements (including proximal and maximal bone lengths, bone widths, and shaft thickness), most measurements of bone microarchitecture (excluding cortical and trabecular thickness and trabecular separation), and all mineralization measurements were labile in response to intake. We examined the possibility that changes in nutrient allocation to bone structure during realimentation facilitated CG in previously food-restricted turtles. Restoration of bone lengths was prioritized over restoration of bone widths during CG. Furthermore, restoration of trabecular number, connectivity density, and bone volume fraction was prioritized over restoration of cortical bone volume fraction. Finally, diaphyseal bone mineralization was partially restored, whereas no restoration of epiphyseal bone mineralization occurred during CG. Shifts in nutrient allocation away from certain bone attributes during food restriction that were not rectified when food availability increased probably provided an energy surplus that enhanced the conversion of food to growth and thus powered the CG response. Our study revealed how resource allocation to various bone attributes is prioritized as nutritional conditions change during development. These "priority rules" may have detrimental consequences later in life, indicating that conservation of green turtle foraging grounds should be given high priority.
RESUMO
Increased mechanical forces on developing cardiac valves drive formation of the highly organized extracellular matrix (ECM) providing tissue integrity and promoting cell behavior and signaling. However, the ability to investigate the response of cardiac valve cells to increased mechanical forces is challenging and remains poorly understood. The developmental window from birth (P0) to postnatal day 7 (P7) when biomechanical forces on the pulmonary valve (PV) are altered due to the initiation of blood flow to the lungs was evaluated in this study. Grossly enlarged PV, in mice deficient in the proteoglycan protease ADAMTS5, exhibited a transient phenotypic rescue from postnatal day 0 (P0) to P7; the Adamts5-/- aortic valves (AV) did not exhibit a phenotypic correction. We hypothesized that blood flow, initiated to the lungs at birth, alters mechanical load on the PV and promotes ECM maturation. In the Adamts5-/- PV, there was an increase in localization of the proteoglycan proteases ADAMTS1, MMP2, and MMP9 that correlated with reduced Versican (VCAN). At birth, Decorin (DCN), a Collagen I binding, small leucine-rich proteoglycan, exhibited complementary stratified localization to VCAN in the wild type at P0 but colocalized with VCAN in Adamts5-/- PV; concomitant with the phenotypic rescue at P7, the PVs in Adamts5-/- mice exhibited stratification of VCAN and DCN similar to wild type. This study indicates that increased mechanical forces on the PV at birth may activate ECM proteases to organize specialized ECM layers during cardiac valve maturation.