RESUMO
Late anti-toxin-B humoral immunity acquired after treatment is important for preventing recurrent Clostridioides difficile infection. We prospectively-measured anti-toxin-B IgG and neutralization titers at diagnosis as potential early predictors of recurrence. High anti-toxin-B-IgG/neutralizing antibodies were associated with short-lasting protection within 6-weeks, however, no difference in recurrence risk was observed by 90-days post-infection.
Assuntos
Anticorpos Antibacterianos , Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Imunoglobulina G , Recidiva , Infecções por Clostridium/imunologia , Infecções por Clostridium/prevenção & controle , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Toxinas Bacterianas/imunologia , Clostridioides difficile/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Proteínas de Bactérias/imunologia , Estudos Prospectivos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Adulto , Idoso de 80 Anos ou maisRESUMO
Traditional clinical models for predicting recurrent Clostridioides difficile infection do not perform well, likely owing to the complex host-pathogen interactions involved. Accurate risk stratification using novel biomarkers could help prevent recurrence by improving underutilization of effective therapies (i.e., fecal transplant, fidaxomicin, bezlotoxumab). We used a biorepository of 257 hospitalized patients with 24 features collected at diagnosis, including 17 plasma cytokines, total/neutralizing anti-toxin B IgG, stool toxins, and PCR cycle threshold (CT) (a proxy for stool organism burden). The best set of predictors for recurrent infection was selected by Bayesian model averaging for inclusion in a final Bayesian logistic regression model. We then used a large PCR-only data set to confirm the finding that PCR CT predicts recurrence-free survival using Cox proportional hazards regression. The top model-averaged features were (probabilities of >0.05, greatest to least): interleukin 6 (IL-6), PCR CT, endothelial growth factor, IL-8, eotaxin, IL-10, hepatocyte growth factor, and IL-4. The accuracy of the final model was 0.88. Among 1,660 cases with PCR-only data, cycle threshold was significantly associated with recurrence-free survival (hazard ratio, 0.95; P < 0.005). Certain biomarkers associated with C. difficile infection severity were especially important for predicting recurrence; PCR CT and markers of type 2 immunity (endothelial growth factor [EGF], eotaxin) emerged as positive predictors of recurrence, while type 17 immune markers (IL-6, IL-8) were negative predictors. In addition to novel serum biomarkers (particularly, IL-6, EGF, and IL-8), the readily available PCR CT may be critical to augment underperforming clinical models for C. difficile recurrence.
Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Humanos , Clostridioides difficile/genética , Toxinas Bacterianas/genética , Interleucina-8 , Interleucina-6 , Teorema de Bayes , Fatores de Crescimento Endotelial/uso terapêutico , Fator de Crescimento Epidérmico/uso terapêutico , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/tratamento farmacológico , Biomarcadores/análise , Reação em Cadeia da PolimeraseRESUMO
The disease severity of Entamoeba histolytica infection ranges from asymptomatic to life-threatening. Recent human and animal data implicate the gut microbiome as a modifier of E. histolytica virulence. Here we have explored the association of the microbiome with susceptibility to amebiasis in infants and in the mouse model of amebic colitis. Dysbiosis occurred symptomatic E. histolytica infection in children, as evidenced by a lower Shannon diversity index of the gut microbiota. To test if dysbiosis was a cause of susceptibility, wild type C57BL/6 mice (which are innately resistant to E. histiolytica infection) were treated with antibiotics prior to cecal challenge with E. histolytica. Compared with untreated mice, antibiotic pre-treated mice had more severe colitis and delayed clearance of E. histolytica. Gut IL-25 and mucus protein Muc2, both shown to provide innate immunity in the mouse model of amebic colitis, were lower in antibiotic pre-treated mice. Moreover, dysbiotic mice had fewer cecal neutrophils and myeloperoxidase activity. Paradoxically, the neutrophil chemoattractant chemokines CXCL1 and CXCL2, as well as IL-1ß, were higher in the colon of mice with antibiotic-induced dysbiosis. Neutrophils from antibiotic pre-treated mice had diminished surface expression of the chemokine receptor CXCR2, potentially explaining their inability to migrate to the site of infection. Blockade of CXCR2 increased susceptibility of control non-antibiotic treated mice to amebiasis. In conclusion, dysbiosis increased the severity of amebic colitis due to decreased neutrophil recruitment to the gut, which was due in part to decreased surface expression on neutrophils of CXCR2.
Assuntos
Disenteria Amebiana/microbiologia , Microbiota/imunologia , Infiltração de Neutrófilos/imunologia , Animais , Pré-Escolar , Modelos Animais de Doenças , Disenteria Amebiana/imunologia , Entamoeba histolytica , Fezes/microbiologia , Citometria de Fluxo , Humanos , Lactente , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina-8B/imunologiaRESUMO
Clostridium difficile is an important cause of nosocomial diarrhea in the western world. Toxins (A, B, and binary toxins) generated by C. difficile bacteria damage intestinal epithelial cells. Hallmarks of host response to C. difficile infection (CDI) include upregulation of inflammatory mediators and tissue infiltration by immune cells. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that is known to enhance the host immune response to infectious pathogens. Additionally, MIF can adversely impact host survival to numerous infections. The role of MIF in the pathogenesis of CDI remains poorly understood. Here, we show that patients with CDI had significantly higher circulating MIF compared to patients who had diarrhea but tested negative for C. difficile (non-CDI controls). Similarly, in a mouse model, C. difficile challenge significantly increased levels of plasma and tissue MIF. Antibody-mediated depletion of MIF decreased C. difficile-induced inflammatory responses, clinical disease, and mortality. Together, these results uncover a potential role for MIF in exacerbating CDI and suggest that use of anti-MIF antibodies may represent a therapeutic strategy to curb host inflammatory responses and improve disease outcomes in CDI.
Assuntos
Anticorpos/administração & dosagem , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/patologia , Infecções por Clostridium/terapia , Fatores Imunológicos/administração & dosagem , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/sangue , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Resultado do TratamentoRESUMO
Understanding the mechanisms by which Entamoeba histolytica drives gut inflammation is critical for the development of improved preventive and therapeutic strategies. E. histolytica encodes a homolog of the human cytokine macrophage migration inhibitory factor (MIF). Here, we investigated the role of E. histolytica MIF (EhMIF) during infection. We found that the concentration of fecal EhMIF correlated with the level of intestinal inflammation in persons with intestinal amebiasis. Mice treated with antibodies that specifically block EhMIF had reduced chemokine expression and neutrophil infiltration in the mucosa. In addition to antibody-mediated neutralization, we used a genetic approach to test the effect of EhMIF on mucosal inflammation. Mice infected with parasites overexpressing EhMIF had increased chemokine expression, neutrophil influx, and mucosal damage. Together, these results uncover a specific parasite protein that increases mucosal inflammation, expands our knowledge of host-parasite interaction during amebic colitis, and highlights a potential immunomodulatory target.
Assuntos
Disenteria Amebiana/patologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Neutrófilos/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Bloqueadores/farmacologia , Células CACO-2 , Técnicas de Cultura de Células , Pré-Escolar , Disenteria Amebiana/tratamento farmacológico , Entamoeba histolytica/efeitos dos fármacos , Fezes/química , Interações Hospedeiro-Parasita , Humanos , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Fatores Inibidores da Migração de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos CBA , Infiltração de Neutrófilos/efeitos dos fármacos , Proteínas de Protozoários/genéticaRESUMO
TAR DNA-binding protein of 43 kDa (TDP-43) is an evolutionarily conserved, ubiquitously expressed, multi-functional DNA/RNA-binding protein with roles in gene transcription, mRNA splicing, stability, transport, micro RNA biogenesis, and suppression of transposons. Aberrant expression of TDP-43 in testis and sperm was recently shown to be associated with male infertility, which highlights the need to understand better the expression of TDP-43 in the testis. We previously cloned TDP-43 from a mouse testis cDNA library, and showed that it functions as a transcriptional repressor and regulates the precise spatiotemporal expression of the Acrv1 gene, which encodes the acrosomal protein SP-10, during spermatogenesis. Here, we performed immunoblotting and immunohistochemistry of the mouse testis using four separate antibodies recognizing the amino and carboxyl termini of TDP-43. TDP-43 is present in the nuclei of germ cells as well as Sertoli cells. TDP-43 expression begins in type B/intermediate spermatogonia, peaks in preleptotene spermatocytes, and becomes undetectable in leptotene and zygotene spermatocytes. Pachytene spermatocytes and early round spermatids again express TDP-43, but its abundance diminishes later in spermatids (at steps 5-8). Interestingly, two of the four antibodies showed TDP-43 expression in spermatids at steps 9-10, which coincides with the initial phase of the histone-to-protamine transition. Immunoreactivity patterns observed in the study suggest that TDP-43 assumes different conformational states at different stages of spermatogenesis. TDP-43 pathology has been extensively studied in the context of neurodegenerative diseases; its role in spermatogenesis warrants further detailed investigation of the involvement of TDP-43 in male infertility.
Assuntos
Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Epitélio Seminífero/química , Epitélio Seminífero/metabolismo , Espermatogênese/fisiologia , Animais , Regulação da Expressão Gênica/genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Intestinal segmented filamentous bacteria (SFB) protect from ameba infection, and protection is transferable with bone marrow dendritic cells (BMDCs). SFB cause an increase in serum amyloid A (SAA), suggesting that SAA might mediate SFB's effects on BMDCs. Here we further explored the role of bone marrow in SFB-mediated protection. Transient gut colonization with SFB or SAA administration alone transiently increased the H3K27 histone demethylase Jmjd3, persistently increased bone marrow Csf2ra expression and granulocyte monocyte precursors (GMPs), and protected from ameba infection. Pharmacologic inhibition of Jmjd3 H3K27 demethylase activity during SAA treatment or blockade of granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling in SFB-colonized mice prevented GMP expansion, decreased gut neutrophils, and blocked protection from ameba infection. These results indicate that alteration of the microbiota and systemic exposure to SAA can influence myelopoiesis and susceptibility to amebiasis via epigenetic mechanisms. Gut microbiota-marrow communication is a previously unrecognized mechanism of innate protection from infection.
Assuntos
Células da Medula Óssea/citologia , Entamoeba histolytica/fisiologia , Entamebíase/fisiopatologia , Trato Gastrointestinal/microbiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Proteína Amiloide A Sérica/fisiologia , Animais , Bactérias , Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Células Progenitoras de Granulócitos e Macrófagos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismoRESUMO
Pathogen detection has traditionally been accomplished by utilizing methods such as cell culture, immunoassays, and nucleic acid amplification tests; however, these methods are not easily implemented in resource-limited settings because special equipment for detection and thermal cycling is often required. In this study, we present a magnetic bead aggregation assay coupled to an inexpensive microfluidic fabrication technique that allows for cell phone detection and analysis of a notable pathogen in less than one hour. Detection is achieved through the use of a custom-built system that allows for fluid flow control via centrifugal force, as well as manipulation of magnetic beads with an adjustable rotating magnetic field. Cell phone image capture and analysis is housed in a 3D-printed case with LED backlighting and a lid-mounted Android phone. A custom-written application (app.) is employed to interrogate images for the extent of aggregation present following loop-mediated isothermal amplification (LAMP) coupled to product-inhibited bead aggregation (PiBA) for detection of target sequences. Clostridium difficile is a pathogen of increasing interest due to its causative role in intestinal infections following antibiotic treatment, and was therefore chosen as the pathogen of interest in the present study to demonstrate the rapid, cost-effective, and sequence-specific detection capabilities of the microfluidic platform described herein.
RESUMO
The host inflammatory response contributes to the tissue damage that occurs during amebic colitis, with tumor necrosis factor alpha (TNF-α) being a key mediator of the gut inflammation observed. Mammalian macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays an important role in the exacerbation of a wide range of inflammatory diseases, including colitis. We identified a MIF gene homolog in the Entamoeba histolytica genome, raising the question of whether E. histolytica MIF (EhMIF) has proinflammatory activity similar to that of mammalian MIF. In this report, we describe the first functional characterization of EhMIF. Antibodies were prepared against recombinantly expressed EhMIF and used to demonstrate that EhMIF is expressed as a 12-kDa protein localized to the cytoplasm of trophozoites. In a manner similar to that of mammalian MIF, EhMIF interacted with the MIF receptor CD74 and bound to macrophages. EhMIF induced interleukin-6 (IL-6) production. In addition, EhMIF enhanced TNF-α secretion by amplifying TNF-α production by lipopolysaccharide (LPS)-stimulated macrophages and by inhibiting the glucocorticoid-mediated suppression of TNF-α secretion. EhMIF was expressed during human infection, as evidenced by the presence of anti-EhMIF antibodies in the sera of children living in an area where E. histolytica infection is endemic. Anti-EhMIF antibodies did not cross-react with human MIF. The ability of EhMIF to modulate host macrophage function may promote an exaggerated proinflammatory immune response and contribute to the tissue damage seen in amebic colitis.
Assuntos
Entamoeba histolytica/imunologia , Imunomodulação/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Macrófagos/imunologia , Animais , Anticorpos/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , Citoplasma/imunologia , Glucocorticoides/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Inflamação/imunologia , Interleucina-6/imunologia , Lipopolissacarídeos/imunologia , Mamíferos/imunologia , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Background: Early diagnosis of late-onset sepsis (LOS) and necrotizing enterocolitis (NEC) in very low birth weight (VLBW, <1,500â g) infants is challenging due to non-specific clinical signs. Inflammatory biomarkers increase in response to infection, but non-infectious conditions also cause inflammation. Cardiorespiratory data contain physiological biomarkers, or physiomarkers, of sepsis that may be useful in combination with inflammatory hematologic biomarkers for sepsis diagnosis. Objectives: To determine whether inflammatory biomarkers measured at the time of LOS or NEC diagnosis differ from times without infection and whether biomarkers correlate with cardiorespiratory sepsis physiomarkers in VLBW infants. Methods: Remnant plasma sample collection from VLBW infants occurred with blood draws for routine laboratory testing and suspected sepsis. We analyzed 11 inflammatory biomarkers and a pulse oximetry sepsis warning score (POWS). We compared biomarker levels obtained at the time of gram-negative (GN) bacteremia or NEC, gram-positive (GP) bacteremia, negative blood cultures, and no suspected infection. Results: We analyzed 188 samples in 54 VLBW infants. Several biomarkers were increased at the time of GN LOS or NEC diagnosis compared with all other samples. POWS was higher in patients with LOS and correlated with five biomarkers. IL-6 had 78% specificity at 100% sensitivity to detect GN LOS or NEC and added information to POWS. Conclusions: Inflammatory plasma biomarkers discriminate sepsis due to GN bacteremia or NEC and correlate with cardiorespiratory physiomarkers.
RESUMO
Entamoeba histolytica, the causative agent of amebiasis, is one of the top three parasitic causes of mortality worldwide. However, no vaccine exists against amebiasis. Using a lead candidate vaccine containing the LecA fragment of Gal-lectin and GLA-3M-052 liposome adjuvant, we immunized rhesus macaques via intranasal or intramuscular routes. The vaccine elicited high-avidity functional humoral responses as seen by the inhibition of amebic attachment to mammalian target cells by plasma and stool antibodies. Importantly, antigen-specific IFN-γ-secreting peripheral blood mononuclear cells (PBMCs) and IgG/IgA memory B cells (BMEM) were detected in immunized animals. Furthermore, antigen-specific antibody and cellular responses were maintained for at least 8 months after the final immunization as observed by robust LecA-specific BMEM as well as IFN-γ+ PBMC responses. Overall, both intranasal and intramuscular immunizations elicited a durable and functional response in systemic and mucosal compartments, which supports advancing the LecA+GLA-3M-052 liposome vaccine candidate to clinical testing.
Assuntos
Administração Intranasal , Anticorpos Antiprotozoários , Entamoeba histolytica , Entamebíase , Interferon gama , Leucócitos Mononucleares , Lipossomos , Macaca mulatta , Vacinas Protozoárias , Animais , Entamoeba histolytica/imunologia , Lipossomos/imunologia , Lipossomos/administração & dosagem , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/administração & dosagem , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Leucócitos Mononucleares/imunologia , Entamebíase/prevenção & controle , Entamebíase/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Injeções Intramusculares , Imunogenicidade da Vacina , Adjuvantes de Vacinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Linfócitos B/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina A/imunologia , Imunoglobulina A/sangue , Antígenos de Protozoários/imunologia , Imunidade Humoral , Memória Imunológica , Proteínas de Protozoários/imunologiaRESUMO
Background: Early diagnosis of late-onset sepsis (LOS) and necrotizing enterocolitis (NEC) in VLBW (<1500g) infants is challenging due to non-specific clinical signs. Inflammatory biomarkers increase in response to infection, but non-infectious conditions also cause inflammation in premature infants. Physiomarkers of sepsis exist in cardiorespiratory data and may be useful in combination with biomarkers for early diagnosis. Objectives: To determine whether inflammatory biomarkers at LOS or NEC diagnosis differ from times without infection, and whether biomarkers correlate with a cardiorespiratory physiomarker score. Methods: We collected remnant plasma samples and clinical data from VLBW infants. Sample collection occurred with blood draws for routine laboratory testing and blood draws for suspected sepsis. We analyzed 11 inflammatory biomarkers and a continuous cardiorespiratory monitoring (POWS) score. We compared biomarkers at gram-negative (GN) bacteremia or NEC, gram-positive (GP) bacteremia, negative blood cultures, and routine samples. Results: We analyzed 188 samples in 54 VLBW infants. Biomarker levels varied widely, even at routine laboratory testing. Several biomarkers were increased at the time of GN LOS or NEC diagnosis compared with all other samples. POWS was higher in patients with LOS and correlated with five biomarkers. IL-6 had 78% specificity at 100% sensitivity to detect GN LOS or NEC and added information to POWS (AUC POWS = 0.610, POWS + IL-6 = 0.680). Conclusions: Inflammatory biomarkers discriminate sepsis due to GN bacteremia or NEC and correlate with cardiorespiratory physiomarkers. Baseline biomarkers did not differ from times of GP bacteremia diagnosis or negative blood cultures.
RESUMO
Entamoeba histolytica is a pathogenic protozoan parasite that causes intestinal colitis, diarrhea, and in some cases, liver abscess. Through transcriptomics analysis, we observed that E. histolytica infection was associated with increased expression of IL-33 mRNA in both the human and murine colon. IL-33, the IL-1 family cytokine, is released after cell injury to alert the immune system of tissue damage. Treatment with recombinant IL-33 protected mice from amebic infection and intestinal tissue damage; moreover, blocking IL-33 signaling made mice more susceptible to amebiasis. IL-33 limited the recruitment of inflammatory immune cells and decreased the pro-inflammatory cytokine IL-6 in the cecum. Type 2 immune responses were upregulated by IL-33 treatment during amebic infection. Interestingly, administration of IL-33 protected RAG2-/- mice but not RAG2-/-γc-/- mice, demonstrating that IL-33-mediated protection required the presence of innate lymphoid cells (ILCs). IL-33 induced recruitment of ILC2 but not ILC1 and ILC3 in RAG2-/- mice. At baseline and after amebic infection, there was a significantly higher IL13+ILC2s in C57BL/J mice, which are naturally resistant to amebiasis, than CBA/J mice. Adoptive transfer of ILC2s to RAG2-/-γc-/- mice restored IL-33-mediated protection. These data reveal that the IL-33-ILC2 pathway is an important host defense mechanism against amebic colitis.
Assuntos
Colo/fisiologia , Disenteria Amebiana/imunologia , Entamoeba histolytica/fisiologia , Entamebíase/imunologia , Interleucina-33/genética , Linfócitos/imunologia , RNA Mensageiro/genética , Animais , Movimento Celular , Colo/parasitologia , Proteínas de Ligação a DNA/genética , Resistência à Doença , Perfilação da Expressão Gênica , Patrimônio Genético , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Transdução de Sinais , Células Th1/imunologia , Células Th2/imunologiaRESUMO
BACKGROUND: The incidence of Clostridioides difficile infection (CDI) has increased over the past 2 decades and is considered an urgent threat by the Centers for Disease Control and Prevention. Hypervirulent strains such as ribotype 027, which possess genes for the additional toxin C. difficile binary toxin (CDT), are contributing to increased morbidity and mortality. METHODS: We retrospectively tested stool from 215 CDI patients for CDT by enzyme-linked immunosorbent assay (ELISA). Stratifying patients by CDT status, we assessed if disease severity and clinical outcomes correlated with CDT positivity. Additionally, we completed quantitative PCR (PCR) DNA extracted from patient stool to detect cdtB gene. Lastly, we performed 16 S rRNA gene sequencing to examine if CDT-positive samples had an altered fecal microbiota. RESULTS: We found that patients with CdtB, the pore-forming component of CDT, detected in their stool by ELISA, were more likely to have severe disease with higher 90-day mortality. CDT-positive patients also had higher C. difficile bacterial burden and white blood cell counts. There was no significant difference in gut microbiome diversity between CDT-positive and -negative patients. CONCLUSIONS: Patients with fecal samples that were positive for CDT had increased disease severity and worse clinical outcomes. Utilization of PCR and testing for C. difficile toxins A and B may not reveal the entire picture when diagnosing CDI; detection of CDT-expressing strains is valuable in identifying patients at risk of more severe disease.
RESUMO
Amebiasis, a disease caused by the parasite Entamoeba histolytica, is estimated to cause millions of infections and at least 55,000 deaths globally each year. With no vaccine currently available, there is an urgent need for an accessible means of stimulating protective mucosal immunity. The objective of this study was to characterize the nasal spray of a novel amebiasis vaccine candidate from a syringe-based liquid atomization device, the Teleflex MAD Nasal™, in both adult and infant nasal airways. Human ergonomic testing was completed to determine realistic actuation parameters. Spray pattern, plume geometry, and droplet size distribution were measured to evaluate reproducibility of free plume characteristics. The Alberta Idealized Nasal Inlet (AINI) and three realistic infant nasal airways were used to determine the in vitro deposition profile in adult and infant airways, respectively. Collectively, in vitro results demonstrated the feasibility of delivering the vaccine candidate to target sites within the nasal airways. Penetration through the nasal airways that could lead to deposition in the lungs was below the limit of quantification for both adult and infant geometries, indicating a low likelihood of adverse events due to lung exposure. These results support continued investigation of intranasal delivery of the synthetic Entamoeba histolytica vaccine.
Assuntos
Amebíase , Entamoeba histolytica , Adjuvantes Farmacêuticos , Adjuvantes de Vacinas , Administração Intranasal , Adulto , Aerossóis , Humanos , Lipossomos , Sprays Nasais , Reprodutibilidade dos Testes , Vacinas SintéticasRESUMO
Plasmid R6K, which contains 3 replication origins called alpha, gamma, and beta, is a favorable system to investigate the molecular mechanism(s) of action at a distance, i.e. replication initiation at a considerable distance from the primary initiator protein binding sites (iterons). The centrally located gamma origin contains 7 iterons that bind to the plasmid-encoded initiator protein, pi. Ori alpha, located at a distance of approximately 4 kb from gamma, contains a single iteron that does not directly bind to pi but is believed to access the protein by pi-mediated alpha-gamma iteron-iteron interaction that loops out the intervening approximately 3.7 kb of DNA. Although the cis-acting components and the trans-acting proteins required for ori gamma function have been analyzed in detail, such information was lacking for ori alpha. Here, we have identified both the sequence elements located at alpha and those at gamma, that together promoted alpha activity. The data support the conclusion that besides the single iteron, a neighboring DNA primase recognition element called G site is essential for alpha-directed plasmid maintenance. Sequences preceding the iteron and immediately following the G site, although not absolutely necessary, appear to play a role in efficient plasmid maintenance. In addition, while both dnaA1 and dnaA2 boxes that bind to DnaA protein and are located at gamma were essential for alpha activity, only dnaA2 was required for initiation at gamma. Mutations in the AT-rich region of gamma also abolished alpha function. These results are consistent with the interpretation that a protein-DNA complex consisting of pi and DnaA forms at gamma and activates alpha at a distance by DNA looping.
Assuntos
DNA Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Plasmídeos/biossíntese , Origem de Replicação/fisiologia , Transativadores/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , DNA Primase/genética , DNA Primase/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Teste de Complementação Genética , Mutação , Plasmídeos/genética , Transativadores/genéticaRESUMO
We developed a SARS-CoV-2 spike subunit vaccine formulation containing dual TLR ligand liposome adjuvant. The vaccine-induced robust systemic neutralizing antibodies and completely protected mice from a lethal challenge. Two immunizations protected against lung injury and cleared the virus from lungs upon challenge. The adjuvanted vaccine also elicited systemic and local anti-Spike IgA which can be an important feature for a COVID-19 vaccine.
RESUMO
Amebiasis is a neglected tropical disease caused by Entamoeba histolytica. Although the disease burden varies geographically, amebiasis is estimated to account for some 55,000 deaths and millions of infections globally per year. Children and travelers are among the groups with the greatest risk of infection. There are currently no licensed vaccines for prevention of amebiasis, although key immune correlates for protection have been proposed from observational studies in humans. We previously described the development of a liposomal adjuvant formulation containing two synthetic TLR ligands (GLA and 3M-052) that enhanced antigen-specific fecal IgA, serum IgG2a, a mixed IFNγ and IL-17A cytokine profile from splenocytes, and protective efficacy following intranasal administration with the LecA antigen. By applying a statistical design of experiments (DOE) and desirability function approach, we now describe the optimization of the dose of each vaccine formulation component (LecA, GLA, 3M-052, and liposome) as well as the excipient composition (acyl chain length and saturation; PEGylated lipid:phospholipid ratio; and presence of antioxidant, tonicity, or viscosity agents) to maximize desired immunogenicity characteristics while maintaining physicochemical stability. This DOE/desirability index approach led to the identification of a lead candidate composition that demonstrated immune response durability and protective efficacy in the mouse model, as well as an assessment of the impact of each active vaccine formulation component on protection. Thus, we demonstrate that both GLA and 3M-052 are required for statistically significant protective efficacy. We also show that immunogenicity and efficacy results differ in female vs male mice, and the differences appear to be at least partly associated with adjuvant formulation composition.
Assuntos
Antígenos de Protozoários/imunologia , Entamoeba histolytica/imunologia , Entamebíase/imunologia , Entamebíase/prevenção & controle , Vacinas Protozoárias/imunologia , Adjuvantes Imunológicos/química , Administração Intranasal , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Fenômenos Químicos , Citocinas/metabolismo , Composição de Medicamentos , Entamebíase/parasitologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunogenicidade da Vacina , Imunoglobulina G/imunologia , Lipossomos , Camundongos , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/química , VacinaçãoRESUMO
Immune dysregulation is characteristic of the more severe stages of SARS-CoV-2 infection. Understanding the mechanisms by which the immune system contributes to COVID-19 severity may open new avenues to treatment. Here, we report that elevated IL-13 was associated with the need for mechanical ventilation in 2 independent patient cohorts. In addition, patients who acquired COVID-19 while prescribed Dupilumab, a mAb that blocks IL-13 and IL-4 signaling, had less severe disease. In SARS-CoV-2-infected mice, IL-13 neutralization reduced death and disease severity without affecting viral load, demonstrating an immunopathogenic role for this cytokine. Following anti-IL-13 treatment in infected mice, hyaluronan synthase 1 (Has1) was the most downregulated gene, and accumulation of the hyaluronan (HA) polysaccharide was decreased in the lung. In patients with COVID-19, HA was increased in the lungs and plasma. Blockade of the HA receptor, CD44, reduced mortality in infected mice, supporting the importance of HA as a pathogenic mediator. Finally, HA was directly induced in the lungs of mice by administration of IL-13, indicating a new role for IL-13 in lung disease. Understanding the role of IL-13 and HA has important implications for therapy of COVID-19 and, potentially, other pulmonary diseases. IL-13 levels were elevated in patients with severe COVID-19. In a mouse model of the disease, IL-13 neutralization reduced the disease and decreased lung HA deposition. Administration of IL-13-induced HA in the lung. Blockade of the HA receptor CD44 prevented mortality, highlighting a potentially novel mechanism for IL-13-mediated HA synthesis in pulmonary pathology.
Assuntos
COVID-19/imunologia , Interleucina-13/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/sangue , COVID-19/patologia , COVID-19/terapia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Interleucina-13/sangue , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Índice de Gravidade de DoençaRESUMO
Immune dysregulation is characteristic of the more severe stages of SARS-CoV-2 infection. Understanding the mechanisms by which the immune system contributes to COVID-19 severity may open new avenues to treatment. Here we report that elevated interleukin-13 (IL-13) was associated with the need for mechanical ventilation in two independent patient cohorts. In addition, patients who acquired COVID-19 while prescribed Dupilumab had less severe disease. In SARS-CoV-2 infected mice, IL-13 neutralization reduced death and disease severity without affecting viral load, demonstrating an immunopathogenic role for this cytokine. Following anti-IL-13 treatment in infected mice, in the lung, hyaluronan synthase 1 (Has1) was the most downregulated gene and hyaluronan accumulation was decreased. Blockade of the hyaluronan receptor, CD44, reduced mortality in infected mice, supporting the importance of hyaluronan as a pathogenic mediator, and indicating a new role for IL-13 in lung disease. Understanding the role of IL-13 and hyaluronan has important implications for therapy of COVID-19 and potentially other pulmonary diseases.