Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 91(17): 11108-11115, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31380627

RESUMO

Electron spin resonance (ESR) spectroscopy measures paramagnetic free radicals, or electron spins, in a variety of biological, chemical, and physical systems. Detection of diverse paramagnetic species is important in applications ranging from quantum computation to biomedical research. Countless efforts have been made to improve the sensitivity of ESR detection. However, the improvement comes at the cost of experimental accessibility. Thus, most ESR spectrometers are limited to specific sample geometries and compositions. Here, we present a nonresonant transmission line ESR probe (microstrip geometry) that effectively couples high frequency microwave magnetic field into a wide range of sample geometries and compositions. The nonresonant transmission line probe maintains detection sensitivity while increasing availability to a wider range of applications. The high frequency magnetic field homogeneity is greatly increased by positioning the sample between the microstrip signal line and the ground plane. Sample interfacing occurs via a universal sample holder which is compatible with both solid and liquid samples. The unavoidable loss in sensitivity due to the nonresonant nature of the transmission line probe (low Q) is recuperated by using a highly sensitive microwave interferometer-based detection circuit. The combination of our sensitive interferometer and nonresonant transmission line provides similar sensitivity to a commercially available ESR spectrometer equipped with a high-Q resonator. The nonresonant probe allows for transmission, reflection, or dual-mode detection (transmission and reflection), where the dual-mode results in a √2 signal enhancement.

2.
Inorg Chem ; 57(18): 11569-11577, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30141625

RESUMO

We bring together magnetization, infrared spectroscopy, and lattice dynamics calculations to uncover the magnetic field-temperature ( B- T) phase diagrams and vibrational properties of the [(CH3)2NH2] M(HCOO)3 ( M = Mn2+, Co2+, Ni2+) family of multiferroics. While the magnetically driven transition to the fully saturated state in [(CH3)2NH2]Mn(HCOO)3 takes place at 15.3 T, substitution with Ni or Co drives the critical fields up toward 100 T, an unexpectedly high energy scale for these compounds. Analysis of the infrared spectrum of the Mn and Ni compounds across TC reveals doublet splitting of the formate bending mode which functions as an order parameter of the ferroelectric transition. By contrast, [(CH3)2NH2]Co(HCOO)3 reveals a surprising framework rigidity across the order-disorder transition due to modest distortions around the Co2+ centers. The transition to the ferroelectric state is thus driven by the dimethylammonium cation freezing and the resulting hydrogen bonding. Under applied field, the Mn (and most likely, the Ni) compounds engage the formate bending mode to facilitate the transition to their fully saturated magnetic states, whereas the Co complex adopts a different mechanism involving formate stretching distortions to lower the overall magnetic energy. Similar structure-property relations involving substitution of transition-metal centers and control of the flexible molecular architecture are likely to exist in other molecule-based multiferroics.

3.
Rev Sci Instrum ; 93(10): 101101, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319314

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy characterizes the magnetic properties of paramagnetic materials at the atomic and molecular levels. Resonators are an enabling technology of EPR spectroscopy. Microresonators, which are miniaturized versions of resonators, have advanced inductive-detection EPR spectroscopy of mass-limited samples. Here, we provide our perspective of the benefits and challenges associated with microresonator use for EPR spectroscopy. To begin, we classify the application space for microresonators and present the conceptual foundation for analysis of resonator sensitivity. We summarize previous work and provide insight into the design and fabrication of microresonators as well as detail the requirements and challenges that arise in incorporating microresonators into EPR spectrometer systems. Finally, we provide our perspective on current challenges and prospective fruitful directions.


Assuntos
Magnetismo , Espectroscopia de Ressonância de Spin Eletrônica , Estudos Prospectivos
4.
J Phys Chem B ; 125(20): 5171-5190, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33960784

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is a powerful method to study the molecular structure and dynamics of materials. The inherently low sensitivity of NMR spectroscopy is a consequence of low spin polarization. Hyperpolarization of a spin ensemble is defined as a population difference between spin states that far exceeds what is expected from the Boltzmann distribution for a given temperature. Dynamic nuclear polarization (DNP) can overcome the relatively low sensitivity of NMR spectroscopy by using a paramagnetic matrix to hyperpolarize a nuclear spin ensemble. Application of DNP to NMR can result in sensitivity gains of up to four orders of magnitude compared to NMR without DNP. Although DNP NMR is now more routinely utilized for solid-state (ss) NMR spectroscopy, it has not been exploited to the same degree for liquid-state samples. This Review will consider challenges and advances in the application of DNP NMR to liquid-state samples. The Review is organized into four sections: (i) mechanisms of DNP NMR relevant to hyperpolarization of liquid samples; (ii) applications of liquid-state DNP NMR; (iii) available detection schemes for liquid-state samples; and (iv) instrumental challenges and outlook for liquid-state DNP NMR.


Assuntos
Espectroscopia de Ressonância Magnética , Estrutura Molecular , Temperatura
5.
Sci Adv ; 6(44)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33115735

RESUMO

We report a microresonator platform that allows room temperature detection of electron spins in volumes on the order of 100 pl, and demonstrate its utility to study low levels of dopants in perovskite oxides. We exploit the toroidal moment in a planar anapole, using a single unit of an anapole metamaterial architecture to produce a microwave resonance exhibiting a spatially confined magnetic field hotspot and simultaneously high quality-factor (Q-factor). To demonstrate the broad implementability of this design and its scalability to higher frequencies, we deploy the microresonators in a commercial electron paramagnetic resonance (EPR) spectrometer operating at 10 GHz and a NIST-built EPR spectrometer operating at 35 GHz. We report continuous-wave (CW) EPR spectra for various samples, including a dilute Mn2+-doped perovskite oxide, CaTiO3, and a transition metal complex, CuCl22H2O. The anapole microresonator presented here is expected to enable multifrequency EPR characterization of dopants and defects in perovskite oxide microcrystals and other volume-limited materials of technological importance.

6.
J Phys Chem B ; 120(27): 6771-7, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27367277

RESUMO

Amorphous hydrated complexes of the polyelectrolytes poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium) were doped with the spin-5/2 ion Mn(2+). X-band electron paramagnetic resonance (EPR) measurements of the Mn(2+) spins within these stoichiometric polyelectrolyte complexes (PECs) revealed an octahedral coordination environment, similar to that observed in aqueous solutions of Mn(2+). This octahedral symmetry of the [Mn(H2O)6](2+) complexes, observed in fully hydrated PECs, is somewhat distorted because of the wide range of ion pairs possible with the sulfonate group on PSS. As the Mn(2+) concentration was increased, the linewidths broadened, indicating the dominance of dipolar broadening over exchange narrowing in determining the linewidths; that is, any exchange narrowing was masked by the large dipolar broadening. The calculated linewidths were used to estimate the strengths of the dipolar interactions, and hence the distances between the Mn(2+) spins, on the basis of a simple model of regularly spaced spins. The distances calculated by this method were roughly comparable to the geometric average distances calculated on the basis of the Mn(2+) concentrations and densities of the doped PEC samples. From a comparison of their EPR spectra, the ion environments in the doped, fully hydrated PECs were found to be similar to those in hydrated classical ion exchange resins. EPR spectra before and after drying of the PECs indicate the replacement of octahedrally coordinated water by oxide anions from the polyanion chain and the corresponding loss of the symmetric environment of Mn(2+) ions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa