Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L179-L190, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878940

RESUMO

Antenatal stressors such as chorioamnionitis (CA) increase the risk for bronchopulmonary dysplasia (BPD). Studies have shown that experimental BPD can be ameliorated by postnatal treatment with mesenchymal stromal cell-derived extracellular vesicles (MEx). However, the antenatal efficacy of MEx to prevent BPD is unknown. To determine whether antenatal MEx therapy attenuates intrauterine inflammation and preserves lung growth in a rat model of CA-induced BPD. At embryonic day (E)20, rat litters were treated with intra-amniotic injections of saline, endotoxin (ETX) to model chorioamnionitis, MEx, or ETX plus MEx followed by cesarean section delivery with placental harvest at E22. Placental and lung evaluations were conducted at day 0 and day 14, respectively. To assess the effects of ETX and MEx on lung growth in vitro, E15 lung explants were imaged for distal branching. Placental tissues from ETX-exposed pregnancies showed increased expression of inflammatory markers NLRP-3 and IL-1ß and altered spiral artery morphology. In addition, infant rats exposed to intrauterine ETX had reduced alveolarization and pulmonary vessel density (PVD), increased right ventricular hypertrophy (RVH), and decreased lung mechanics. Intrauterine MEx therapy of ETX-exposed pups reduced inflammatory cytokines, normalized spiral artery architecture, and preserved distal lung growth and mechanics. In vitro studies showed that MEx treatment enhanced distal lung branching and increased VEGF and SPC gene expression. Antenatal MEx treatment preserved distal lung growth and reduced intrauterine inflammation in a model of CA-induced BPD. We speculate that MEx may provide a novel therapeutic strategy to prevent BPD due to antenatal inflammation.


Assuntos
Displasia Broncopulmonar/etiologia , Corioamnionite/patologia , Vesículas Extracelulares/metabolismo , Pulmão/crescimento & desenvolvimento , Células-Tronco Mesenquimais/metabolismo , Animais , Modelos Animais de Doenças , Endotoxinas , Feminino , Inflamação/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Placenta/patologia , Gravidez , Ratos Sprague-Dawley , Transdução de Sinais
2.
iScience ; 26(6): 106827, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250802

RESUMO

Cancer cells often acquire resistance to cell death programs induced by loss of integrin-mediated attachment to extracellular matrix (ECM). Given that adaptation to ECM-detached conditions can facilitate tumor progression and metastasis, there is significant interest in effective elimination of ECM-detached cancer cells. Here, we find that ECM-detached cells are remarkably resistant to the induction of ferroptosis. Although alterations in membrane lipid content are observed during ECM detachment, it is instead fundamental changes in iron metabolism that underlie resistance of ECM-detached cells to ferroptosis. More specifically, our data demonstrate that levels of free iron are low during ECM detachment because of changes in both iron uptake and iron storage. In addition, we establish that lowering the levels of ferritin sensitizes ECM-detached cells to death by ferroptosis. Taken together, our data suggest that therapeutics designed to kill cancer cells by ferroptosis may be hindered by lack of efficacy toward ECM-detached cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa