RESUMO
Male infertility is identified by the inability of a man to successfully impregnate his fertile female partner, even following a year of regular unprotected sexual intercourse. About half of all infertility cases are attributed to what is known as "male factor" infertility. The escalating prevalence of male infertility in the contemporary era across the globe can be largely attributed to environmental pollution, which is the common etiological factor due to the ubiquitous presence of the environmental contaminants. Bisphenol A is recognized as an endocrine-disrupting chemical that has adverse effects on both male and female reproductive systems. On the other hand, numerous studies have demonstrated that Panax ginseng possessed the potential to improve male infertility parameters; promote spermatogenesis, recover the quality and motility of sperm and enhance testicular functions as it acted as a natural androgen supplement. The objective of this review is to offer a summary of the findings obtained from the current research data on the insult of bisphenol A (BPA) on male infertility and its supposed mode of action, as well as shed light on the potent ameliorative role of Panax ginseng extract, with a special focus on the mechanism behind its action. This review delivers a clear understanding of BPA mechanism of action on male infertility and the presumed risks deriving from its exposure. Also, this review provides evidence for the functional role of Panax ginseng extract in restoring male fertility.
Assuntos
Compostos Benzidrílicos , Infertilidade Masculina , Panax , Fenóis , Extratos Vegetais , Panax/química , Masculino , Fenóis/química , Fenóis/farmacologia , Humanos , Compostos Benzidrílicos/química , Compostos Benzidrílicos/farmacologia , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Disruptores Endócrinos/farmacologia , Animais , Espermatogênese/efeitos dos fármacosRESUMO
BACKGROUND: Ulcerative colitis is an inflammatory bowel disease (IBD) that involves inflammation of the colon lining and rectum. Although a definitive cure for IBD has not been identified, various therapeutic approaches have been proposed to mitigate the symptomatic presentation of this disease, primarily focusing on reducing inflammation. The aim of the present study was to evaluate the therapeutic potential of combining dental pulp stem cells (DPSCs) with sulfasalazine in an acetic acid-induced ulcerative colitis rat model and to assess the impact of this combination on the suppression of inflammatory cytokines and the regulation of oxidative stress in vivo. METHODS: Ulcerative colitis was induced in rats through transrectal administration of 3% acetic acid. The therapeutic effect of combining DPSCs and sulfasalazine on UC was evaluated by measuring the colonic weight/length ratio and edema markers; performing histopathological investigations of colon tissue; performing immunohistochemical staining for NF-κB-P65 and IL-1ß; and evaluating oxidative stress and antioxidant indices via ELISA. Moreover, the proinflammatory markers NF-κB-P65, TNF-α and TLR-4 were assessed in colon tissue via ELISA. Furthermore, qRTâPCR was used to estimate the expression levels of the TLR-4, NF-κB-P65, and MYD88 genes in colon tissue. RESULTS: The investigated macroscopic and microscopic signs of inflammation were markedly improved after the combined administration of sulfasalazine and DPSCs, where a noticeable improvement in histological structure, with an intact mucosal epithelium and mild inflammatory infiltration in the mucosa and submucosa, with slight hemorrhage. The administration of either DPSCs or sulfasalazine, either individually or in combination, significantly reduced ROS levels and significantly increased XOD activity. The immunohistochemical results demonstrated that the combined administration of DPSCs and sulfasalazine attenuated NFκB-p65 and IL-1ß expression. Finally, the combined administration of DPSCs and sulfasalazine significantly downregulated MyD88, NF-κB and TLR4 gene expression. CONCLUSIONS: Cotreatment with DPSCs and sulfasalazine had synergistic effects on ulcerative colitis, and these effects were relieved.
RESUMO
Doxorubicin (DOX) is the cornerstone of chemotherapy. However, it has dose-dependent cardiotoxic events that limit its clinical use. This study was intended to investigate the efficiency of DOX as an anti-cancer against the MCF-7 cell line in the presence of diosmin (DIO) and to appraise the protective impact of DIO against DOX cardiotoxicity in vivo. In vitro study was carried out to establish the conservation of DOX cytotoxicity in the presence of DIO. In vivo study was conducted on 42 adult female Wistar rats that were equally allocated into 6 groups; control, DIO (100 mg/kg), DIO (200 mg/kg), DOX (20 mg/kg, single dose i.p.), DIO (100 mg/kg) + DOX, received DIO orally (100 mg/kg) for 30 days, then administrated with a single dose of DOX and DIO (200 mg/kg) + DOX, received DIO orally (200 mg/kg) for 30 days, then administrated with DOX. In vitro study showed preservation of cytotoxic activity of DOX on MCF-7 in the presence of DIO. In vivo study indicated that DOX altered electrocardiograph (ECG) parameters. Also, it yielded a significant rise in CK-MB, cTnT and LDH serum levels and cardiac contents of MDA, IL-1ß; paralleled by a significant drop in cardiac IL-10 and SOD. Moreover, significant upregulation of Bax, TNF-α, and HIF-1α, in concomitant with significant downregulation of Bcl-2 mRNA in cardiac tissue have been recorded in the DOX group. Furthermore, histopathological description of cardiac tissues showed that DOX alters normal cardiac histoarchitecture. On the opposite side, DIO pretreatment could ameliorate ECG parameters, suppress IL-1ß and enhanceIL-10, promote activity of SOD and repress MDA. Additionally, downregulation of Bax, TNF-α, HIF-1α and upregulation of Bcl-2 have been demonstrated in DIO-pretreated rats. Furthermore, the histopathological examination of cardiac tissues illustrated that DIO had a favorable impact on the protection of heart histoarchitecture. DIO is suggested for protection against acute cardiotoxicity caused by DOX without affecting antitumor activity.