Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464185

RESUMO

Advanced sequencing technologies enable rapid detection of sequence variants, aiming to uncover the molecular foundations of human genetic disorders. The challenge lies in interpreting the influence of new exome variants that lead to diverse phenotypes. Our study introduces a detailed, multi-tiered method for assessing the impact of novel variants, particularly focusing on the zinc finger protein 1 (ZPR1) gene. Herein, we employed a combination of variant effect predictors, protein stability analyses, and the American College of Medical Genetics and Association of Molecular Pathology (ACMG/AMP) guidelines. Our structural analysis pinpoints specific amino acid residues in the ZPR1 zinc finger domains that are sensitive to changes, distinguishing between benign and disease-causing coding variants using rigorous in silico tools. We examined 223 germline ZPR1 exome variants, uncovering significant ethnic disparities in the frequency of heterozygous harmful ZPR1 variants, ranging from 0.04% in the Ashkenazi Jewish population to 0.34% in African/African Americans. Additionally, the discovery of three homozygous carriers in European and South Asian groups suggests a higher occurrence of ZPR1 variants in these demographics, meriting further exploration. This research provides insights into the prevalence and implications of amino acid substitutions in the ZPR1 protein.

2.
Gene ; 927: 148651, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38871035

RESUMO

BACKGROUND: The troponin complex plays a crucial role in regulating skeletal and cardiac contraction. Congenital myopathies can occur due to several mutations in genes that encode skeletal troponin. Moreover, there is limited information regarding the composition of skeletal troponin. This review specifically examines a comprehensive review of the TNNC gene mutations on cardiac and skeletal regulations. MAIN BODY: Troponin C (TNNC) has been linked to a newly discovered inherited muscle disorder. Genetic variations in genes that encode skeletal troponin can impair the function of sarcomeres. Various treatment approaches have been employed to mitigate the impact of variations, including the use of troponin activators, the injection of wild-type protein via AAV gene therapy, and myosin modification to enhance muscle contraction. The processes responsible for the pathophysiological implications of the variations in genes that encode skeletal troponin are not fully understood. CONCLUSION: This comprehensive review will contribute to the understanding of the relationship between human cardiomyopathy and TNNC mutations and will guide the development of therapy approaches.


Assuntos
Mutação , Troponina C , Humanos , Troponina C/genética , Troponina C/metabolismo , Miócitos Cardíacos/metabolismo , Músculo Esquelético/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/terapia , Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa