Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443159

RESUMO

Inositol-1,4,5-triphosphate (IP3) kinase B (ITPKB) is a ubiquitously expressed lipid kinase that inactivates IP3, a secondary messenger that stimulates calcium release from the endoplasmic reticulum (ER). Genome-wide association studies have identified common variants in the ITPKB gene locus associated with reduced risk of sporadic Parkinson's disease (PD). Here, we investigate whether ITPKB activity or expression level impacts PD phenotypes in cellular and animal models. In primary neurons, knockdown or pharmacological inhibition of ITPKB increased levels of phosphorylated, insoluble α-synuclein pathology following treatment with α-synuclein preformed fibrils (PFFs). Conversely, ITPKB overexpression reduced PFF-induced α-synuclein aggregation. We also demonstrate that ITPKB inhibition or knockdown increases intracellular calcium levels in neurons, leading to an accumulation of calcium in mitochondria that increases respiration and inhibits the initiation of autophagy, suggesting that ITPKB regulates α-synuclein pathology by inhibiting ER-to-mitochondria calcium transport. Furthermore, the effects of ITPKB on mitochondrial calcium and respiration were prevented by pretreatment with pharmacological inhibitors of the mitochondrial calcium uniporter complex, which was also sufficient to reduce α-synuclein pathology in PFF-treated neurons. Taken together, these results identify ITPKB as a negative regulator of α-synuclein aggregation and highlight modulation of ER-to-mitochondria calcium flux as a therapeutic strategy for the treatment of sporadic PD.


Assuntos
Cálcio/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , alfa-Sinucleína/metabolismo , Animais , Autofagia/genética , Retículo Endoplasmático/metabolismo , Estudo de Associação Genômica Ampla/métodos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosforilação/genética , Transdução de Sinais/genética , Sinucleinopatias/genética , Sinucleinopatias/metabolismo
2.
Muscle Nerve ; 60(6): 801-810, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31531861

RESUMO

INTRODUCTION: Improved methods are needed to detect and quantify age-related muscle change. In this study we assessed the electrical properties of muscle impacted by acquired mitochondrial DNA mutations via the PolG mouse, which exhibits typical age-associated features, and the impact of a potential therapy, nicotinamide mononucleotide (NMN). METHODS: The gastrocnemii of 24 PolG and 30 wild-type (WT) mice (8 PolG and 17 WT treated with NMN) were studied in an electrical impedance-measuring cell. Conductivity and relative permittivity were determined from the impedance data. Myofiber cross-sectional area (CSA) was quantified histologically. RESULTS: Untreated PolG mice demonstrated alterations in several impedance features, including 50-kHz relative permittivity and center frequency. A potential effect of NMN was also observed in these parameters in PolG but not WT animals. Impedance values correlated with myofiber CSA. DISCUSSION: Electrical impedance is sensitive to myofiber features considered characteristic of aging and to the impact of a potential therapy.


Assuntos
Senilidade Prematura/fisiopatologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/fisiopatologia , Senilidade Prematura/patologia , Animais , Tamanho Celular , DNA Polimerase gama/genética , DNA Mitocondrial/genética , Modelos Animais de Doenças , Impedância Elétrica , Técnicas de Introdução de Genes , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Mutação , Miografia/métodos , Mononucleotídeo de Nicotinamida/farmacologia
3.
J Pineal Res ; 62(3)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28178380

RESUMO

Melatonin has demonstrated a potential protective effect in central nervous system. Thus, it is interesting to determine whether pre-ischemia melatonin administration could protect against cerebral ischemia/reperfusion (IR)-related injury and the underlying molecular mechanisms. In this study, we revealed that IR injury significantly activated endoplasmic reticulum (ER) stress and autophagy in a middle cerebral artery occlusion mouse model. Pre-ischemia melatonin treatment was able to attenuate IR-induced ER stress and autophagy. In addition, with tandem RFP-GFP-LC3 adeno-associated virus, we demonstrated pre-ischemic melatonin significantly alleviated IR-induced autophagic flux. Furthermore, we showed that IR induced neuronal apoptosis through ER stress related signalings. Moreover, IR-induced autophagy was significantly blocked by ER stress inhibitor (4-PBA), as well as ER-related signaling inhibitors (PERK inhibitor, GSK; IRE1 inhibitor, 3,5-dibromosalicylaldehyde). Finally, we revealed that melatonin significantly alleviated cerebral infarction, brain edema, neuronal apoptosis, and neurological deficiency, which were remarkably abolished by tunicamycin (ER stress activator) and rapamycin (autophagy activator), respectively. In summary, our study provides strong evidence that pre-ischemia melatonin administration significantly protects against cerebral IR injury through inhibiting ER stress-dependent autophagy. Our findings shed light on the novel preventive and therapeutic strategy of daily administration of melatonin, especially among the population with high risk of cerebral ischemic stroke.


Assuntos
Autofagia/efeitos dos fármacos , Isquemia Encefálica , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Melatonina/farmacologia , Proteínas de Membrana/metabolismo , Neurônios , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral , eIF-2 Quinase/metabolismo , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controle
4.
Sci Rep ; 14(1): 2061, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267530

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by CAG trinucleotide repeat expansions in exon 1 of the HTT gene. In addition to germline CAG expansions, somatic repeat expansions in neurons also contribute to HD pathogenesis. The DNA mismatch repair gene, MSH3, identified as a genetic modifier of HD onset and progression, promotes somatic CAG expansions, and thus presents a potential therapeutic target. However, what extent of MSH3 protein reduction is needed to attenuate somatic CAG expansions and elicit therapeutic benefits in HD disease models is less clear. In our study, we employed potent di-siRNAs to silence mouse Msh3 mRNA expression in a dose-dependent manner in HdhQ111/+ mice and correlated somatic Htt CAG instability with MSH3 protein levels from simultaneously isolated DNA and protein after siRNA treatment. Our results reveal a linear correlation with a proportionality constant of ~ 1 between the prevention of somatic Htt CAG expansions and MSH3 protein expression in vivo, supporting MSH3 as a rate-limiting step in somatic expansions. Intriguingly, despite a 75% reduction in MSH3 protein levels, striatal nuclear HTT aggregates remained unchanged. We also note that evidence for nuclear Msh3 mRNA that is inaccessible to RNA interference was found, and that MSH6 protein in the striatum was upregulated following MSH3 knockdown in HdhQ111/+ mice. These results provide important clues to address critical questions for the development of therapeutic molecules targeting MSH3 as a potential therapeutic target for HD.


Assuntos
Corpo Estriado , Doença de Huntington , Animais , Camundongos , Éxons , Doença de Huntington/genética , Interferência de RNA , RNA Mensageiro , RNA Interferente Pequeno/genética
5.
J Biol Methods ; 8(1): e143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604395

RESUMO

OpenArray is one of the most high-throughput qPCR platforms available but its efficiency can be limited by sample preparation methods that are slow and costly. To optimize the sample workflow for high-throughput qPCR processing by OpenArray, small-scale sample preparation methods were compared for compatibility with this system to build confidence in a method that maintains quality and accuracy while using less starting material and saving time and money. This study is the first to show that the Cells-to-CT kit can be used to prepare samples within the dynamic range of OpenArray directly from cultured cells in a single well of a 96-well plate when used together with a cDNA preamplification PCR step. Use of Cells-to-CT produced results of similar quality and accuracy to that of a preparation method using purified RNA in less than half the sample preparation time. While Cells-to-CT samples also exhibited slightly increased variance, which affects the ability of OpenArray to distinguish small differences in gene expression, overall gene expression mean results correlated well between small-scale methods. This work demonstrates that Cells-to-CT with preamplification can be used to reliably prepare samples for OpenArray analysis while saving time, money, and starting material.

6.
Transl Neurodegener ; 5: 19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822367

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease. Increasing evidence supports that dysregulation of autophagy and mitochondrial function are closely related with PD pathogenesis. In this review, we briefly summarized autophagy pathway, which consists of macroautophagy, microautophagy and chaperone-mediated autophagy (CMA). Then, we discussed the involvement of mitochondrial dysfunction in PD pathogenesis. We specifically reviewed the recent developments in the relationship among several PD related genes, autophagy and mitochondrial dysfunction, followed by the therapeutic implications of these pathways. In conclusion, we propose that autophagy activity and mitochondrial homeostasis are of high importance in the pathogenesis of PD. Better understanding of these pathways can shed light on the novel therapeutic methods for PD prevention and amelioration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa