Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(28): 16546-16556, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601225

RESUMO

During blood-stage development, malaria parasites are challenged with the detoxification of enormous amounts of heme released during the proteolytic catabolism of erythrocytic hemoglobin. They tackle this problem by sequestering heme into bioinert crystals known as hemozoin. The mechanisms underlying this biomineralization process remain enigmatic. Here, we demonstrate that both rodent and human malaria parasite species secrete and internalize a lipocalin-like protein, PV5, to control heme crystallization. Transcriptional deregulation of PV5 in the rodent parasite Plasmodium berghei results in inordinate elongation of hemozoin crystals, while conditional PV5 inactivation in the human malaria agent Plasmodium falciparum causes excessive multidirectional crystal branching. Although hemoglobin processing remains unaffected, PV5-deficient parasites generate less hemozoin. Electron diffraction analysis indicates that despite the distinct changes in crystal morphology, neither the crystalline order nor unit cell of hemozoin are affected by impaired PV5 function. Deregulation of PV5 expression renders P. berghei hypersensitive to the antimalarial drugs artesunate, chloroquine, and atovaquone, resulting in accelerated parasite clearance following drug treatment in vivo. Together, our findings demonstrate the Plasmodium-tailored role of a lipocalin family member in hemozoin formation and underscore the heme biomineralization pathway as an attractive target for therapeutic exploitation.


Assuntos
Heme/metabolismo , Lipocalinas/metabolismo , Malária/parasitologia , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Hemeproteínas/genética , Hemeproteínas/metabolismo , Humanos , Lipocalinas/química , Lipocalinas/genética , Malária/metabolismo , Camundongos , Plasmodium berghei/química , Plasmodium berghei/genética , Plasmodium falciparum/química , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
2.
Environ Microbiol ; 24(12): 6320-6335, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36530021

RESUMO

Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase-bright spore-like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore-like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub-culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.


Assuntos
Bacillus , Firmicutes , Esporos Bacterianos/genética , Filogenia
3.
Angew Chem Int Ed Engl ; 60(34): 18680-18687, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34042235

RESUMO

Amyloid-ß peptide (Aß) oligomers are pathogenic species of amyloid aggregates in Alzheimer's disease. Like certain protein toxins, Aß oligomers permeabilize cellular membranes, presumably through a pore formation mechanism. Owing to their structural and stoichiometric heterogeneity, the structure of these pores remains to be characterized. We studied a functional Aß42-pore equivalent, created by fusing Aß42 to the oligomerizing, soluble domain of the α-hemolysin (αHL) toxin. Our data reveal Aß42-αHL oligomers to share major structural, functional, and biological properties with wild-type Aß42-pores. Single-particle cryo-EM analysis of Aß42-αHL oligomers (with an overall 3.3 Šresolution) reveals the Aß42-pore region to be intrinsically flexible. The Aß42-αHL oligomers will allow many of the features of the wild-type amyloid oligomers to be studied that cannot be otherwise, and may be a highly specific antigen for the development of immuno-base diagnostics and therapies.


Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/análise , Microscopia Crioeletrônica , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos
4.
J Am Chem Soc ; 142(47): 19956-19968, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170675

RESUMO

The fabrication of dynamic, transformable biomaterials that respond to environmental cues represents a significant step forward in the development of synthetic materials that rival their highly functional, natural counterparts. Here, we describe the design and synthesis of crystalline supramolecular architectures from charge-complementary heteromeric pairs of collagen-mimetic peptides (CMPs). Under appropriate conditions, CMP pairs spontaneously assemble into either 1D ultraporous (pore diameter >100 nm) tubes or 2D bilayer nanosheets due to the structural asymmetry that arises from heteromeric self-association. Crystalline collagen tubes represent a heretofore unobserved morphology of this common biomaterial. In-depth structural characterization from a suite of biophysical methods, including TEM, AFM, high-resolution cryo-EM, and SAXS/WAXS measurements, reveals that the sheet and tube assemblies possess a similar underlying lattice structure. The experimental evidence suggests that the tubular structures are a consequence of the self-scrolling of incipient 2D layers of collagen triple helices and that the scrolling direction determines the formation of two distinct structural isoforms. Furthermore, we show that nanosheets and tubes can spontaneously interconvert through manipulation of the assembly pH and systematic adjustment of the CMP sequence. Altogether, we establish initial guidelines for the construction of dynamically responsive 1D and 2D assemblies that undergo a structurally programmed morphological transition.


Assuntos
Colágeno/química , Nanoestruturas/química , Peptídeos/química , Sequência de Aminoácidos , Microscopia Crioeletrônica , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Nanotubos/química , Porosidade
5.
J Am Chem Soc ; 141(51): 20107-20117, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31800228

RESUMO

Engineering free-standing 2D nanomaterials with compositional, spatial, and functional control across size regimes from the nano- to mesoscale represents a significant challenge. Herein, we demonstrate a straightforward strategy for the thermodynamically controlled fabrication of multicomponent sectored nanosheets in which each sector can be chemically and spatially addressed independently and orthogonally. Collagen triple helices, comprising collagen-mimetic peptides (CMPs), are employed as molecularly programmable crystallizable units. Modulating their thermodynamic stability affords the controlled synthesis of 2D core-shell nanostructures via thermally driven heteroepitaxial growth. Structural information, gathered from SAXS and cryo-TEM, reveals that the distinct peptide domains maintain their intrinsic lattice structure and illuminates various mechanisms employed by CMP triple helices to alleviate the elastic strain associated with the interfacial lattice mismatch. Finally, we demonstrate that different sectors of the sheet surface can be selectively functionalized using bioorthogonal conjugation chemistry. Altogether, we establish a robust platform for constructing multifunctional 2D nanoarchitectures in which one can systematically program their compositional, spatial, and functional properties, which is a significant step toward their deployment into functional nanoscale devices.

6.
Angew Chem Int Ed Engl ; 58(38): 13507-13512, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31291499

RESUMO

The successful integration of 2D nanomaterials into functional devices hinges on developing fabrication methods that afford hierarchical control across length scales of the entire assembly. We demonstrate structural control over a class of crystalline 2D nanosheets assembled from collagen triple helices. By lengthening the triple helix unit through sequential additions of Pro-Hyp-Gly triads, we achieved sub-angstrom tuning over the 2D lattice. These subtle changes influence the overall nanosheet size, which can be adjusted across the mesoscale size regime. The internal structure was observed by cryo-TEM with direct electron detection, which provides real-space high-resolution images, in which individual triple helices comprising the lattice can be clearly discerned. These results establish a general strategy for tuning the structural hierarchy of 2D nanomaterials that employ rigid, cylindrical structural units.

7.
J Am Chem Soc ; 140(26): 8138-8146, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29708745

RESUMO

In Alzheimer's disease, amyloid-ß (Aß) plaques and tau neurofibrillary tangles are the two pathological hallmarks. The co-occurrence and combined reciprocal pathological effects of Aß and tau protein aggregation have been observed in animal models of the disease. However, the molecular mechanism of their interaction remain unknown. Using a variety of biophysical measurements, we here show that the native full-length tau protein solubilizes the Aß40 peptide and prevents its fibrillation. The tau protein delays the amyloid fibrillation of the Aß40 peptide at substoichiometric ratios, showing different binding affinities toward the different stages of the aggregated Aß40 peptides. The Aß monomer structure remains random coil in the presence of tau, as observed by nuclear magnetic resonance (NMR), circular dichroism (CD) spectroscopy and photoinduced cross-linking methods. We propose a potential interaction mechanism for the influence of tau on Aß fibrillation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/química , Dicroísmo Circular , Humanos , Microscopia de Força Atômica , Ressonância Magnética Nuclear Biomolecular , Tamanho da Partícula , Propriedades de Superfície , Proteínas tau/química
8.
Chemistry ; 24(56): 14989-14993, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30088299

RESUMO

The molecular geometry and supramolecular packing of two bichromophoric prototypic light harvesting compounds D1A2 and D2A2, consisting of two naphthylimide energy donors that were attached to the 1,7 bay positions of a perylene monoimide diester energy acceptor, have been determined by a hybrid approach using magic angle spinning NMR spectroscopy and electron nano-crystallography (ENC), followed by modelling. NMR shift constraints, combined with the P 1 ‾ space group obtained from ENC, were used to generate a centrosymmetric dimer of truncated perylene fragments. This racemic packing motif is used in a biased molecular replacement approach to generate a partial 3D electrostatic scattering potential map. Resolving the structure of the bay substituents is guided by the inversion symmetry, and the distance constraints obtained from heteronuclear correlation spectra. The antenna molecules form a pseudocrystalline lattice of antiparallel centrosymmetric dimers with pockets of partially disordered bay substituents. The two molecules in a unit cell form a butterfly-type arrangement. The hybrid methodology that has been developed is robust and widely applicable for critical structural underpinning of self-assembling structures of large organic molecules.

9.
J Biol Chem ; 291(32): 16485-93, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27325705

RESUMO

Many protein folding diseases are intimately associated with accumulation of amyloid aggregates. The amyloid materials formed by different proteins/peptides share many structural similarities, despite sometimes large amino acid sequence differences. Some amyloid diseases constitute risk factors for others, and the progression of one amyloid disease may affect the progression of another. These connections are arguably related to amyloid aggregates of one protein being able to directly nucleate amyloid formation of another, different protein: the amyloid cross-interaction. Here, we discuss such cross-interactions between the Alzheimer disease amyloid-ß (Aß) peptide and other amyloid proteins in the context of what is known from in vitro and in vivo experiments, and of what might be learned from clinical studies. The aim is to clarify potential molecular associations between different amyloid diseases. We argue that the amyloid cascade hypothesis in Alzheimer disease should be expanded to include cross-interactions between Aß and other amyloid proteins.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Agregação Patológica de Proteínas/metabolismo , Animais , Humanos
10.
J Nanosci Nanotechnol ; 17(2): 908-13, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29671474

RESUMO

Extracellular vesicles (EVs), secreted by cells and found in body fluids play important roles in intercellular communication. Therefore, EVs are receiving increasing attention as potential biomarkers in the diagnosis and prognosis of various diseases. However, the detection and the quantification of EVs are hampered by the nanometer scale of these particles and by the lack of optimized quantification methods. Atomic force microscopy (AFM) is a powerful technology that can detect small particles. Here we report a 3D capture method for sample preparation of AFM which improves the accuracy, sensitivity and reproducibility for EVs' detection, compared to conventional sample preparation methods. By shaking a mica plate in EV solution, all the EVs were captured onto the 2D surface. The majority of the captured particles have a size ranging from 10 to 120 nm, which correlates with size data obtained from transmission electron microscopy studies. This novel sample preparation method has high adaptability potential and can also be applied to other organic and inorganic nanoparticles.


Assuntos
Vesículas Extracelulares , Microscopia de Força Atômica/métodos , Nanopartículas/química , Células HEK293 , Humanos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Reprodutibilidade dos Testes
11.
J Nanosci Nanotechnol ; 17(2): 926-31, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29671478

RESUMO

In this study, Single walled carbon nanotube (SWNT)-streptavidin complexes were used to capture and purify biotinylated proteins, including bio-GFP and bio-DBS using a pull-down method. The purification conditions were systematically studied, including surface blocking of SWNT using chicken egg albumin (CEA), the ratio of SWNT-streptavidin complexes to the cell lysate, as well as the centrifugation speed. Optimization of the protein purification using SWNT-streptavidin complexes shows the possibility of carbon nanotubes as a promising candidate for protein purification applications. The SWNT-streptavidin could be used as a scaffold to analyze protein structure directly by cryo-transmission electron microscopy, which provides better understanding in protein­protein interactions and biological processes.


Assuntos
Biotina/química , Nanotubos de Carbono/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Estreptavidina/química , Albuminas/química , Albuminas/isolamento & purificação , Albuminas/metabolismo , Animais , Biotina/metabolismo , Biotinilação , Galinhas , Proteínas Recombinantes/metabolismo , Estreptavidina/metabolismo
12.
J Biol Chem ; 289(40): 27766-75, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25100721

RESUMO

Many factors are known to influence the oligomerization, fibrillation, and amyloid formation of the Aß peptide that is associated with Alzheimer disease. Other proteins that are present when Aß peptides deposit in vivo are likely to have an effect on these aggregation processes. To separate specific versus broad spectrum effects of proteins on Aß aggregation, we tested a series of proteins not reported to have chaperone activity: catalase, pyruvate kinase, albumin, lysozyme, α-lactalbumin, and ß-lactoglobulin. All tested proteins suppressed the fibrillation of Alzheimer Aß(1-40) peptide at substoichiometric ratios, albeit some more effectively than others. All proteins bound non-specifically to Aß, stabilized its random coils, and reduced its cytotoxicity. Surprisingly, pyruvate kinase and catalase were at least as effective as known chaperones in inhibiting Aß aggregation. We propose general mechanisms for the broad-spectrum inhibition Aß fibrillation by proteins. The mechanisms we discuss are significant for prognostics and perhaps even for prevention and treatment of Alzheimer disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Chaperonas Moleculares/metabolismo , Agregados Proteicos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Humanos , Agregação Patológica de Proteínas
13.
Biochemistry ; 53(40): 6302-8, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25198136

RESUMO

Protein/peptide oligomerization, cross-ß strand fibrillation, and amyloid deposition play a critical role in many diseases, but despite extensive biophysical characterization, the structural and dynamic details of oligomerization and fibrillation of amyloidic peptides/proteins remain to be fully clarified. Here, we simultaneously monitored the atomic, molecular, and mesoscopic states of aggregating Alzheimer's amyloid ß (Aß) peptides over time, using a slow aggregation protocol and a fast aggregation protocol, and determined the cytotoxicity of the intermediate states. We show that in the early stage of fast fibrillation (the lag phase) the Aß peptides coalesced into apparently unstructured globules (15-200 nm in diameter), which slowly grew larger. Then a sharp transition occurred, characterized by the first appearance of single fibrillar structures of approximately ≥100 nm. These fibrils emerged from the globules. Simultaneously, an increase was observed for the cross-ß strand conformation that is characteristic of the fibrils that constitute mature amyloid. The number and size of single fibrils rapidly increased. Eventually, the fibrils coalesced into mature amyloid. Samples from the early lag phase of slow fibrillation conditions were especially toxic to cells, and this toxicity sharply decreased when fibrils formed and matured into amyloid. Our results suggest that the formation of fibrils may protect cells by reducing the toxic structures that appear in the early lag phase of fibrillation.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/química , Amiloide/fisiologia , Peptídeos beta-Amiloides/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Cinética , Microscopia de Força Atômica , Nanoestruturas , Fragmentos de Peptídeos/fisiologia , Agregação Patológica de Proteínas
14.
J Biol Inorg Chem ; 19(4-5): 623-34, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24737040

RESUMO

The amyloid ß (Aß) peptides are 39-42 residue-long peptides found in the senile plaques in the brains of Alzheimer's disease (AD) patients. These peptides self-aggregate in aqueous solution, going from soluble and mainly unstructured monomers to insoluble ordered fibrils. The aggregation process(es) are strongly influenced by environmental conditions. Several lines of evidence indicate that the neurotoxic species are the intermediate oligomeric states appearing along the aggregation pathways. This minireview summarizes recent findings, mainly based on solution and solid-state NMR experiments and electron microscopy, which investigate the molecular structures and characteristics of the Aß peptides at different stages along the aggregation pathways. We conclude that a hairpin-like conformation constitutes a common motif for the Aß peptides in most of the described structures. There are certain variations in different hairpin conformations, for example regarding H-bonding partners, which could be one reason for the molecular heterogeneity observed in the aggregated systems. Interacting hairpins are the building blocks of the insoluble fibrils, again with variations in how hairpins are organized in the cross-section of the fibril, perpendicular to the fibril axis. The secondary structure propensities can be seen already in peptide monomers in solution. Unfortunately, detailed structural information about the intermediate oligomeric states is presently not available. In the review, special attention is given to metal ion interactions, particularly the binding constants and ligand structures of Aß complexes with Cu(II) and Zn(II), since these ions affect the aggregation process(es) and are considered to be involved in the molecular mechanisms underlying AD pathology.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
15.
Chemistry ; 20(9): 2410-9, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24478167

RESUMO

Many neurodegenerative diseases, like Parkinson's, Alzheimer's, or Huntington's disease, occur as a result of amyloid protein fibril formation and cell death induced by this process. Cyclic peptides (CPs) and their derivatives form a new class of powerful inhibitors that prevent amyloid fibrillation and decrease the cytotoxicity of aggregates. The strategies for designing CPs are described, with respect to their amino acid sequence and/or conformational similarity to amyloid fibrils. The implications of CPs for the study and possible treatment of amyloid-related diseases are discussed.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Sequência de Aminoácidos , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo
16.
Biomacromolecules ; 15(6): 1985-91, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24750033

RESUMO

Polyamines promote the formation of the Aß peptide amyloid fibers that are a hallmark of Alzheimer's disease. Here we show that polyamines interact with nonaggregated Aß peptides, thereby reducing the peptide's hydrophobic surface. We characterized the associated conformational change through NMR titrations and molecular dynamics simulations. We found that even low concentrations of spermine, sperimidine, and putrescine fully protected SH-SY5Y (a neuronal cell model) against the most toxic conformational species of Aß, even at an Aß oligomer concentration that would otherwise kill half of the cells or even more. These observations lead us to conclude that polyamines interfere with the more toxic prefibrillar conformations and might protect cells by promoting the structural transition of Aß toward its less toxic fibrillar state that we reported previously. Since polyamines are present in brain fluid at the concentrations where we observed all these effects, their activity needs to be taken into account in understanding the molecular processes related to the development of Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Poliaminas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Poliaminas/química , Agregação Patológica de Proteínas/patologia , Estrutura Secundária de Proteína
17.
Acta Crystallogr A Found Adv ; 80(Pt 1): 1-17, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189437

RESUMO

Deep learning techniques can recognize complex patterns in noisy, multidimensional data. In recent years, researchers have started to explore the potential of deep learning in the field of structural biology, including protein crystallography. This field has some significant challenges, in particular producing high-quality and well ordered protein crystals. Additionally, collecting diffraction data with high completeness and quality, and determining and refining protein structures can be problematic. Protein crystallographic data are often high-dimensional, noisy and incomplete. Deep learning algorithms can extract relevant features from these data and learn to recognize patterns, which can improve the success rate of crystallization and the quality of crystal structures. This paper reviews progress in this field.


Assuntos
Aprendizado Profundo , Cristalografia , Algoritmos , Comportamento Compulsivo , Cristalização
19.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 7): 1223-30, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23793148

RESUMO

When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e(-) Å(-2)), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins.


Assuntos
Algoritmos , Cristalografia por Raios X , Coleta de Dados , Elétrons , Muramidase/química , Nanopartículas/química , Intensificação de Imagem Radiográfica/instrumentação , Interpretação Estatística de Dados , Humanos , Modelos Moleculares , Conformação Proteica , Intensificação de Imagem Radiográfica/métodos , Software
20.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 852-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633595

RESUMO

Flash-cooled three-dimensional crystals of the small protein lysozyme with a thickness of the order of 100 nm were imaged by 300 kV cryo-EM on a Falcon direct electron detector. The images were taken close to focus and to the eye appeared devoid of contrast. Fourier transforms of the images revealed the reciprocal lattice up to 3 Å resolution in favourable cases and up to 4 Å resolution for about half the crystals. The reciprocal-lattice spots showed structure, indicating that the ordering of the crystals was not uniform. Data processing revealed details at higher than 2 Å resolution and indicated the presence of multiple mosaic blocks within the crystal which could be separately processed. The prospects for full three-dimensional structure determination by electron imaging of protein three-dimensional nanocrystals are discussed.


Assuntos
Microscopia Crioeletrônica/métodos , Imageamento Tridimensional/métodos , Nanopartículas/química , Proteínas/química , Análise de Fourier , Muramidase/química , Proteínas/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa