Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Psychol ; 8: 144, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28228739

RESUMO

Proportional reasoning is important and yet difficult for many students, who often use additive strategies, where multiplicative strategies are better suited. In our research we explore the potential of an interactive touchscreen tablet application to promote proportional reasoning by creating conditions that steer students toward multiplicative strategies. The design of this application (Mathematical Imagery Trainer) was inspired by arguments from embodied-cognition theory that mathematical understanding is grounded in sensorimotor schemes. This study draws on a corpus of previously treated data of 9-11 year-old students, who participated individually in semi-structured clinical interviews, in which they solved a manipulation task that required moving two vertical bars at a constant ratio of heights (1:2). Qualitative analyses revealed the frequent emergence of visual attention to the screen location halfway along the bar that was twice as high as the short bar. The hypothesis arose that students used so-called "attentional anchors" (AAs)-psychological constructions of new perceptual structures in the environment that people invent spontaneously as their heuristic means of guiding effective manual actions for managing an otherwise overwhelming task, in this case keeping vertical bars at the same proportion while moving them. We assumed that students' AAs on the mathematically relevant points were crucial in progressing from additive to multiplicative strategies. Here we seek farther to promote this line of research by reanalyzing data from 38 students (aged 9-11). We ask: (1) What quantitative evidence is there for the emergence of AAs?; and (2) How does the transition from additive to multiplicative reasoning take place when solving embodied proportions tasks in interaction with the touchscreen tablet app? We found that: (a) AAs appeared for all students; (b) the AA-types were few across the students; (c) the AAs were mathematically relevant (top of the bars and halfway along the tall bar); (d) interacting with the tablet was crucial for the AAs' emergence; and (e) the vast majority of students progressed from additive to multiplicative strategies (as corroborated with oral utterances). We conclude that touchscreen applications have the potential to create interaction conditions for coordinating action and perception into mathematical cognition.

2.
Cogn Res Princ Implic ; 1(1): 33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28180183

RESUMO

Embodiment perspectives from the cognitive sciences offer a rethinking of the role of sensorimotor activity in human learning, knowing, and reasoning. Educational researchers have been evaluating whether and how these perspectives might inform the theory and practice of STEM instruction. Some of these researchers have created technological systems, where students solve sensorimotor interaction problems as cognitive entry into curricular content. However, the field has yet to agree on a conceptually coherent and empirically validated design framework, inspired by embodiment perspectives, for developing these instructional resources. A stumbling block toward such consensus, we propose, is an implicit disagreement among educational researchers on the relation between physical movement and conceptual learning. This hypothesized disagreement could explain the contrasting choices we witness among current designs for learning with respect to instructional methodology for cultivating new physical actions - whereas some researchers use an approach of direct instruction, such as explicit teaching of gestures, others use an indirect approach, where students must discover effective movements to solve a task. Prior to comparing these approaches, it may help first to clarify key constructs. In this theoretical essay we draw on embodiment and systems literature as well as findings from our design research so as to offer the following taxonomy that may facilitate discourse about movement in STEM learning: (1) distal movement is the technologically extended effect of physical movement on the environment; (2) proximal movement is the physical movements themselves; and (3) sensorimotor schemes are the routinized patterns of cognitive activity that become enacted through proximal movement by orienting on so-called attentional anchors. Attentional anchors are goal-oriented phenomenological objects or enactive perceptions ("sensori-") that organize proximal movement to effect distal movement ("-motor"). All three facets of movement must be considered in analyzing embodied learning processes. We demonstrate that indirect movement instruction enables students to develop new sensorimotor schemes including attentional anchors as idiosyncratic solutions to physical interaction problems. These schemes are, by necessity, grounded in students' own agentive relation to the world while also grounding target content such as mathematical notions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa