Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Alzheimers Dement ; 20(4): 2894-2905, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520322

RESUMO

INTRODUCTION: Tau aggregation into paired helical filaments and neurofibrillary tangles is characteristic of Alzheimer's disease (AD) and related disorders. However, biochemical assays for the quantification of soluble, earlier-stage tau aggregates are lacking. We describe an immunoassay that is selective for tau oligomers and related soluble aggregates over monomers. METHODS: A homogeneous (single-antibody) immunoassay was developed using a novel anti-tau monoclonal antibody and validated with recombinant and brain tissue-derived tau. RESULTS: The assay signals were concentration dependent for recombinant tau aggregates in solution but not monomers, and recognized peptides within, but not outside, the aggregation-prone microtubule binding region. The signals in inferior and middle frontal cortical tissue homogenates increased with neuropathologically determined Braak staging, and were higher in insoluble than soluble homogenized brain fractions. Autopsy-verified AD gave stronger signals than other neurodegenerative diseases. DISCUSSION: The quantitative oligomer/soluble aggregate-specific assay can identify soluble tau aggregates, including oligomers, from monomers in human and in vitro biospecimens. HIGHLIGHTS: The aggregation of tau to form fibrils and neurofibrillary tangles is a key feature of Alzheimer's disease. However, biochemical assays for the quantification of oligomers/soluble aggregated forms of tau are lacking. We developed a new assay that preferentially binds to soluble tau aggregates, including oligomers and fibrils, versus monomers. The assay signal increased corresponding to the total protein content, Braak staging, and insolubility of the sequentially homogenized brain tissue fractions in an autopsy-verified cohort. The assay recognized tau peptides containing the microtubule binding region but not those covering the N- or C-terminal regions only.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Emaranhados Neurofibrilares , Imunoensaio , Peptídeos/metabolismo
2.
Brain ; 145(6): 2161-2176, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34918018

RESUMO

Individuals with familial Alzheimer's disease due to PSEN1 mutations develop high cortical fibrillar amyloid-ß load but often have lower cortical 11C-Pittsburgh compound B (PiB) retention than Individuals with sporadic Alzheimer's disease. We hypothesized this is influenced by limited interactions of Pittsburgh compound B with cotton wool plaques, an amyloid-ß plaque type common in familial Alzheimer's disease but rare in sporadic Alzheimer's disease. Histological sections of frontal and temporal cortex, caudate nucleus and cerebellum were obtained from 14 cases with sporadic Alzheimer's disease, 12 cases with familial Alzheimer's disease due to PSEN1 mutations, two relatives of a PSEN1 mutation carrier but without genotype information and three non-Alzheimer's disease cases. Sections were processed immunohistochemically using amyloid-ß-targeting antibodies and the fluorescent amyloid stains cyano-PiB and X-34. Plaque load was quantified by percentage area analysis. Frozen homogenates from the same brain regions from five sporadic Alzheimer's disease and three familial Alzheimer's disease cases were analysed for 3H-PiB in vitro binding and concentrations of amyloid-ß1-40 and amyloid-ß1-42. Nine sporadic Alzheimer's disease, three familial Alzheimer's disease and three non-Alzheimer's disease participants had 11C-PiB PET with standardized uptake value ratios calculated using the cerebellum as the reference region. Cotton wool plaques were present in the neocortex of all familial Alzheimer's disease cases and one sporadic Alzheimer's disease case, in the caudate nucleus from four familial Alzheimer's disease cases, but not in the cerebellum. Cotton wool plaques immunolabelled robustly with 4G8 and amyloid-ß42 antibodies but weakly with amyloid-ß40 and amyloid-ßN3pE antibodies and had only background cyano-PiB fluorescence despite labelling with X-34. Relative to amyloid-ß plaque load, cyano-Pittsburgh compound B plaque load was similar in sporadic Alzheimer's disease while in familial Alzheimer's disease it was lower in the neocortex and the caudate nucleus. In both regions, insoluble amyloid-ß1-42 and amyloid-ß1-40 concentrations were similar in familial Alzheimer's disease and sporadic Alzheimer's disease groups, while 3H-PiB binding was lower in the familial Alzheimer's disease than the sporadic Alzheimer's disease group. Higher amyloid-ß1-42 concentration associated with higher 3H-PiB binding in sporadic Alzheimer's disease but not familial Alzheimer's disease. 11C-PiB retention correlated with region-matched post-mortem amyloid-ß plaque load; however, familial Alzheimer's disease cases with abundant cotton wool plaques had lower 11C-PiB retention than sporadic Alzheimer's disease cases with similar amyloid-ß plaque loads. PiB has limited ability to detect amyloid-ß aggregates in cotton wool plaques and may underestimate total amyloid-ß plaque burden in brain regions with abundant cotton wool plaques.


Assuntos
Doença de Alzheimer , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina/metabolismo , Encéfalo/patologia , Radioisótopos de Carbono/metabolismo , Humanos , Placa Amiloide/metabolismo
3.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268524

RESUMO

Alzheimer's disease is a progressive neurodegenerative disease characterized neuropathologically by presence of extracellular amyloid plaques composed of fibrillar amyloid beta (Aß) peptides and intracellular neurofibrillary tangles. Post-mortem and in vivo studies implicate HSV-1 infection in the brain as a precipitating factor in disease/pathology initiation. HSV-1 infection of two-dimensional (2D) neuronal cultures causes intracellular accumulation of Aß42 peptide, but these 2D models do not recapitulate the three-dimensional (3D) architecture of brain tissue.We employed human induced pluripotent stem cells (hiPSCs) to compare patterns of Aß42 accumulation in HSV-1 infected 2D (neuronal monolayers) and 3D neuronal cultures (brain organoids). Akin to prior studies, HSV-1-infected 2D cultures showed Aß42 immunoreactivity in cells expressing the HSV-1 antigen ICP4 (ICP4+). Conversely, accumulation of Aß42 in ICP4+ cells in infected organoids was rarely observed. These results highlight the importance of considering 3D cultures to model host-pathogen interaction.IMPORTANCE The "pathogen" hypothesis of Alzheimer's disease (AD) proposes that brain HSV-1 infection could be an initial source of amyloid beta (Aß) peptide-containing amyloid plaque development. Aß accumulation was reported in HSV-1-infected 2D neuronal cultures and neural stem cell cultures, as well as in HSV-1-infected 3D neuronal culture models.The current study extends these findings by showing different patterns of Aß42 accumulation following HSV-1 infection of 2D compared to 3D neuronal cultures (brain organoids). Specifically, 2D neuronal cultures showed Aß42-immunoreactivity mainly in HSV-1-infected cells and only rarely in uninfected cells or infected cells exposed to antivirals. Conversely, 3D brain organoids showed accumulation of Aß42 mainly in non-infected cells surrounding HSV-1-infected cells. We suggest that because brain organoids better recapitulate architectural features of a developing brain than 2D cultures, they may be a more suitable model to investigate the involvement of HSV-1 in the onset of AD pathology.

4.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787148

RESUMO

Herpes simplex virus 1 (HSV-1) establishes latency in both peripheral nerve ganglia and the central nervous system (CNS). The outcomes of acute and latent infections in these different anatomic sites appear to be distinct. It is becoming clear that many of the existing culture models using animal primary neurons to investigate HSV-1 infection of the CNS are limited and not ideal, and most do not recapitulate features of CNS neurons. Human induced pluripotent stem cells (hiPSCs) and neurons derived from them are documented as tools to study aspects of neuropathogenesis, but few have focused on modeling infections of the CNS. Here, we characterize functional two-dimensional (2D) CNS-like neuron cultures and three-dimensional (3D) brain organoids made from hiPSCs to model HSV-1-human-CNS interactions. Our results show that (i) hiPSC-derived CNS neurons are permissive for HSV-1 infection; (ii) a quiescent state exhibiting key landmarks of HSV-1 latency described in animal models can be established in hiPSC-derived CNS neurons; (iii) the complex laminar structure of the organoids can be efficiently infected with HSV, with virus being transported from the periphery to the central layers of the organoid; and (iv) the organoids support reactivation of HSV-1, albeit less efficiently than 2D cultures. Collectively, our results indicate that hiPSC-derived neuronal platforms, especially 3D organoids, offer an extraordinary opportunity for modeling the interaction of HSV-1 with the complex cellular and architectural structure of the human CNS.IMPORTANCE This study employed human induced pluripotent stem cells (hiPSCs) to model acute and latent HSV-1 infections in two-dimensional (2D) and three-dimensional (3D) CNS neuronal cultures. We successfully established acute HSV-1 infections and infections showing features of latency. HSV-1 infection of the 3D organoids was able to spread from the outer surface of the organoid and was transported to the interior lamina, providing a model to study HSV-1 trafficking through complex neuronal tissue structures. HSV-1 could be reactivated in both culture systems; though, in contrast to 2D cultures, it appeared to be more difficult to reactivate HSV-1 in 3D cultures, potentially paralleling the low efficiency of HSV-1 reactivation in the CNS of animal models. The reactivation events were accompanied by dramatic neuronal morphological changes and cell-cell fusion. Together, our results provide substantive evidence of the suitability of hiPSC-based neuronal platforms to model HSV-1-CNS interactions in a human context.


Assuntos
Sistema Nervoso Central/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Animais , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Chlorocebus aethiops , Herpes Simples/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Neurônios/patologia , Neurônios/virologia , Células Vero
5.
Acta Neuropathol ; 140(4): 463-476, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32772265

RESUMO

Specificity and sensitivity of positron emission tomography (PET) radiopharmaceuticals targeting fibrillar amyloid-ß (Aß) deposits is high for detection of neuritic Aß plaques, a mature form of Aß deposits which often have dense Aß core (i.e., cored plaques). However, imaging-to-autopsy validation studies of amyloid PET radioligands have identified several false positive cases all of which had mainly diffuse Aß plaques (i.e., plaques without neuritic pathology or dense amyloid core), and high amyloid PET signal was reported in the striatum where diffuse plaques predominate in Alzheimer's disease (AD). Relative contributions of different plaque types to amyloid PET signal is unclear, particularly in neocortical areas where they are intermixed in AD. In vitro binding assay and autoradiography were performed using [3H]flutemetamol and [3H]Pittsburgh Compound-B (PiB) in frozen brain homogenates from 30 autopsy cases including sporadic AD and non-AD controls with a range of brain Aß burden and plaque density. Fixed tissue sections of frontal cortex and caudate from 10 of the AD cases were processed for microscopy using fluorescent derivatives of flutemetamol (cyano-flutemetamol) and PiB (cyano-PiB) and compared to Aß immunohistochemistry and pan-amyloid (X-34) histology. Using epifluorescence microscopy, percent area coverage and fluorescence output values of cyano-PiB- and cyano-flutemetamol-labeled plaques in two-dimensional microscopic fields were then calculated and combined to obtain integrated density measurements. Using confocal microscopy, we analysed total fluorescence output of the entire three-dimensional volume of individual cored plaques and diffuse plaques labeled with cyano-flutemetamol or cyano-PiB. [3H]Flutemetamol and [3H]PiB binding values in tissue homogenates correlated strongly and their binding pattern in tissue sections, as seen on autoradiograms, overlapped the pattern of Aß-immunoreactive plaques on directly adjacent sections. Cyano-flutemetamol and cyano-PiB fluorescence was prominent in cored plaques and less so in diffuse plaques. Across brain regions and cases, percent area coverage of cyano-flutemetamol-labeled plaques correlated strongly with cyano-PiB-labeled and Aß-immunoreactive plaques. For both ligands, plaque burden, calculated as percent area coverage of all Aß plaque types, was similar in frontal cortex and caudate regions, while integrated density values were significantly greater in frontal cortex, which contained both cored plaques and diffuse plaques, compared to the caudate, which contained only diffuse plaques. Three-dimensional analysis of individual plaques labeled with either ligand showed that total fluorescence output of a single cored plaque was equivalent to total fluorescence output of approximately three diffuse plaques of similar volume. Our results indicate that [18F]flutemetamol and [11C]PiB PET signal is influenced by both diffuse plaques and cored plaques, and therefore is likely a function of plaque size and density of Aß fibrils in plaques. Brain areas with large volumes/frequencies of diffuse plaques could yield [18F]flutemetamol and [11C]PiB PET retention levels comparable to brain regions with a lower volume/frequency of cored plaques.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Compostos de Anilina , Benzotiazóis , Placa Amiloide/diagnóstico por imagem , Compostos Radiofarmacêuticos , Tiazóis , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Autopsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placa Amiloide/patologia , Tomografia por Emissão de Pósitrons/métodos
6.
Acta Neuropathol ; 137(3): 413-436, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30734106

RESUMO

Although, by age 40, individuals with Down syndrome (DS) develop amyloid-ß (Aß) plaques and tau-containing neurofibrillary tangles (NFTs) linked to cognitive impairment in Alzheimer's disease (AD), not all people with DS develop dementia. Whether Aß plaques and NFTs are associated with individuals with DS with (DSD +) and without dementia (DSD -) is under-investigated. Here, we applied quantitative immunocytochemistry and fluorescent procedures to characterize NFT pathology using antibodies specific for tau phosphorylation (pS422, AT8), truncation (TauC3, MN423), and conformational (Alz50, MC1) epitopes, as well as Aß and its precursor protein (APP) to frontal cortex (FC) and striatal tissue from DSD + to DSD - cases. Expression profiling of single pS422 labeled FC layer V and VI neurons was also determined using laser capture microdissection and custom-designed microarray analysis. Analysis revealed that cortical and striatal Aß plaque burdens were similar in DSD + and DSD - cases. In both groups, most FC plaques were neuritic, while striatal plaques were diffuse. By contrast, FC AT8-positive NFTs and neuropil thread densities were significantly greater in DSD + compared to DSD -, while striatal NFT densities were similar between groups. FC pS422-positive and TauC3 NFT densities were significantly greater than Alz50-labeled NFTs in DSD + , but not DSD - cases. Putaminal, but not caudate pS422-positive NFT density, was significantly greater than TauC3-positive NFTs. In the FC, AT8 + pS422 + Alz50, TauC3 + pS422 + Alz50, pS422 + Alz50, and TauC3 + pS422 positive NFTs were more frequent in DSD + compared to DSD- cases. Single gene-array profiling of FC pS422 positive neurons revealed downregulation of 63 of a total of 864 transcripts related to Aß/tau biology, glutamatergic, cholinergic, and monoaminergic metabolism, intracellular signaling, cell homeostasis, and cell death in DSD + compared DSD - cases. These observations suggest that abnormal tau aggregation plays a critical role in the development of dementia in DS.


Assuntos
Encéfalo/patologia , Demência/etiologia , Síndrome de Down/complicações , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Adulto , Demência/patologia , Síndrome de Down/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Neuropathology ; 36(2): 135-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26293308

RESUMO

Studies of acetylcholine degrading enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in Alzheimer's disease (AD) have suggested their potential role in the development of fibrillar amyloid-ß (Aß) plaques (amyloid plaques). A recent genome-wide association study analysis identified a novel association between genetic variations in the BCHE locus and amyloid burden. We studied BChE immunoreactivity in hippocampal tissue sections from AD and control cases, and examined its relationship with amyloid plaques, neurofibrillary tangles (NFT), dystrophic neurites (DN) and neuropil threads (NT). Compared to controls, AD cases had greater BChE immunoreactivity in hippocampal neurons and neuropils in CA2/3, but not in the CA1, CA4 and dentate gyrus. The majority of amyloid plaques (> 80%, using a pan-amyloid marker X-34) contained discrete neuritic clusters which were dual-labeled with antibodies against BChE and phosphorylated tau (clone AT8). There was no association between overall regional BChE immunoreaction intensity and amyloid plaque burden. In contrast to previous reports, BChE was localized in only a fraction (~10%) of classic NFT (positive for X-34). A similar proportion of BChE-immunoreactive pyramidal cells were AT8 immunoreactive. Greater NFT and DN loads were associated with greater BChE immunoreaction intensity in CA2/3, but not in CA1, CA4 and dentate gyrus. Our results demonstrate that in AD hippocampus, BChE accumulates in neurons and plaque-associated neuritic clusters, but only in a small proportion of NFT. The association between greater neurofibrillary pathology burden and markedly increased BChE immunoreactivity, observed selectively in CA2/3 region, could reflect a novel compensatory mechanism. Since CA2/3 is generally considered more resistant to AD pathology, BChE upregulation could impact the cholinergic modulation of glutamate neurotransmission to prevent/reduce neuronal excitotoxicity in AD hippocampus.


Assuntos
Doença de Alzheimer/enzimologia , Butirilcolinesterase/biossíntese , Hipocampo/enzimologia , Hipocampo/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Butirilcolinesterase/análise , Feminino , Humanos , Imuno-Histoquímica , Masculino , Emaranhados Neurofibrilares/enzimologia , Emaranhados Neurofibrilares/patologia , Neurônios/enzimologia , Neurônios/patologia , Filamentos do Neurópilo/enzimologia , Filamentos do Neurópilo/patologia , Placa Amiloide/enzimologia , Placa Amiloide/patologia
8.
Brain Inj ; 30(12): 1399-1413, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27834536

RESUMO

OBJECTIVE: To test the hypothesis that the nucleus basalis of Meynert (nbM), a cholinergic basal forebrain (CBF) cortical projection system, develops neurofibrillary tangles (NFTs) during the progressive pathological stages of chronic traumatic encephalopathy (CTE) in the brain of athletes. METHOD: To characterize NFT pathology, tau-antibodies marking early, intermediate and late stages of NFT development in CBF tissue obtained at autopsy from eighteen former athletes and veterans with a history of repetitive mild traumatic brain injury (TBI) were used. RESULTS: Analysis revealed that cholinergic nbM neurons develop intracellular tau-immunoreactive changes progressively across the pathological stages of CTE. In particular, there was an increase in pre-tangle (phosphorylated pS422) and oligomeric (TOC1 and TNT1) forms of tau in stage IV compared to stage II CTE cases. The nbM neurons also displayed pathologic TDP-43 inclusions and diffuse extracellular and vascular amyloid-ß (Aß) deposits in CTE. A higher percentage of pS422/p75NTR, pS422 and TNT1 labelled neurons were significantly correlated with age at symptom onset, interval between symptom onset and death and age at death. CONCLUSION: The development of NFTs within the cholinergic nbM neurons could contribute to an axonal disconnection in CTE. Further studies are needed to determine the mechanism driving NFT formation in the nbM neurons and its relation to chronic cognitive dysfunction in CTE.


Assuntos
Núcleo Basal de Meynert/patologia , Colina O-Acetiltransferase/metabolismo , Encefalopatia Traumática Crônica/patologia , Neurônios/metabolismo , Proteínas tau/metabolismo , Adulto , Idoso , Peptídeos beta-Amiloides/metabolismo , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Monoéster Fosfórico Hidrolases/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Índices de Gravidade do Trauma , Adulto Jovem
9.
Neuropathology ; 34(1): 11-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23869942

RESUMO

This post mortem immunohistochemical study examined the localization and distribution of ubiquilin-1 (UBL), a shuttle protein which interacts with ubiquitin and the proteasome, in the hippocampus from Alzheimer's disease (AD) dementia cases, and age-matched cases without dementia. In Braak stages 0-I-II cases, UBL immunoreactivity was detected in a dense fiber network in the neuropil, and in the cell cytoplasm and nucleoplasm of neurons in Cornu Ammonis (CA) fields and dentate gyrus granular neurons. In Braak stages III-IV and V-VI cases, UBL immunoreactivity was reduced in the neuropil and in the cytoplasm of the majority of CA1 neurons; some CA1 pyramidal neurons and the majority of CA2/3 pyramidal, CA4 multipolar, and dentate granular neurons had markedly increased UBL immunoreactivity in the nucleoplasm. Dual immunofluorescence analysis of UBL and antibody clone AT8 revealed co-localization most frequently in CA1 pyramidal neurons in Braak stage III-IV and V-VI cases. Further processing using the pan-amyloid marker X-34 revealed prominent UBL/X-34 dual labeling of extracellular NFT confined to the CA1/subiculum in Braak stage V-VI cases. Our results demonstrate that in AD hippocampus, early NFT changes are associated with neuronal up-regulation of UBL in nucleoplasm, or its translocation from the cytoplasm to the nucleus. The perseverance of UBL changes in CA2/3, CA4 and dentate gyrus, generally considered as more resistant to NFT pathology, but not in the CA1, may mark a compensatory, potentially protective response to increased tau phosphorylation in hippocampal neurons; the failure of such a response may contribute to neuronal degeneration in end-stage AD.


Assuntos
Doença de Alzheimer/patologia , Proteínas de Transporte/análise , Proteínas de Ciclo Celular/análise , Hipocampo/patologia , Emaranhados Neurofibrilares/patologia , Proteínas Adaptadoras de Transdução de Sinal , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Proteínas Relacionadas à Autofagia , Feminino , Hipocampo/química , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade
10.
Amyloid ; 30(2): 169-187, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36411500

RESUMO

BACKGROUND: [18F]flutemetamol is a PET radioligand used to image brain amyloid, but its detection of myocardial amyloid is not well-characterized. This histological study characterized binding of fluorescently labeled flutemetamol (cyano-flutemetamol) to amyloid deposits in myocardium. METHODS: Myocardial tissue was obtained post-mortem from 29 subjects with cardiac amyloidosis including transthyretin wild-type (ATTRwt), hereditary/variant transthyretin (ATTRv) and immunoglobulin light-chain (AL) types, and from 10 cardiac amyloid-free controls. Most subjects had antemortem electrocardiography, echocardiography, SPECT and cardiac MRI. Cyano-flutemetamol labeling patterns and integrated density values were evaluated relative to fluorescent derivatives of Congo red (X-34) and Pittsburgh compound-B (cyano-PiB). RESULTS: Cyano-flutemetamol labeling was not detectable in control subjects. In subjects with cardiac amyloidosis, cyano-flutemetamol labeling matched X-34- and cyano-PiB-labeled, and transthyretin- or lambda light chain-immunoreactive, amyloid deposits and was prevented by formic acid pre-treatment of myocardial sections. Cyano-flutemetamol mean fluorescence intensity, when adjusted for X-34 signal, was higher in the ATTRwt than the AL group. Cyano-flutemetamol integrated density correlated strongly with echocardiography measures of ventricular septal thickness and posterior wall thickness, and with heart mass. CONCLUSION: The high selectivity of cyano-flutemetamol binding to myocardial amyloid supports the diagnostic utility of [18F]flutemetamol PET imaging in patients with ATTR and AL types of cardiac amyloidosis.


Assuntos
Amiloidose , Placa Amiloide , Humanos , Placa Amiloide/patologia , Pré-Albumina/genética , Pré-Albumina/metabolismo , Miocárdio/patologia , Benzotiazóis/metabolismo , Amiloidose/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo
11.
Front Aging Neurosci ; 15: 1299451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328735

RESUMO

Linear regression is one of the most used statistical techniques in neuroscience, including the study of the neuropathology of Alzheimer's disease (AD) dementia. However, the practical utility of this approach is often limited because dependent variables are often highly skewed and fail to meet the assumption of normality. Applying linear regression analyses to highly skewed datasets can generate imprecise results, which lead to erroneous estimates derived from statistical models. Furthermore, the presence of outliers can introduce unwanted bias, which affect estimates derived from linear regression models. Although a variety of data transformations can be utilized to mitigate these problems, these approaches are also associated with various caveats. By contrast, a robust regression approach does not impose distributional assumptions on data allowing for results to be interpreted in a similar manner to that derived using a linear regression analysis. Here, we demonstrate the utility of applying robust regression to the analysis of data derived from studies of human brain neurodegeneration where the error distribution of a dependent variable does not meet the assumption of normality. We show that the application of a robust regression approach to two independent published human clinical neuropathologic data sets provides reliable estimates of associations. We also demonstrate that results from a linear regression analysis can be biased if the dependent variable is significantly skewed, further indicating robust regression as a suitable alternate approach.

12.
J Alzheimers Dis ; 94(1): 227-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212097

RESUMO

BACKGROUND: Altered glutamatergic neurotransmission may contribute to impaired default mode network (DMN) function in Alzheimer's disease (AD). Among the DMN hub regions, frontal cortex (FC) was suggested to undergo a glutamatergic plasticity response in prodromal AD, while the status of glutamatergic synapses in the precuneus (PreC) during clinical-neuropathological AD progression is not known. OBJECTIVE: To quantify vesicular glutamate transporter VGluT1- and VGluT2-containing synaptic terminals in PreC and FC across clinical stages of AD. METHODS: Unbiased sampling and quantitative confocal immunofluorescence of cortical VGluT1- and VGluT2-immunoreactive profiles and spinophilin-labeled dendritic spines were performed in cases with no cognitive impairment (NCI), mild cognitive impairment (MCI), mild-moderate AD (mAD), or moderate-severe AD (sAD). RESULTS: In both regions, loss of VGluT1-positive profile density was seen in sAD compared to NCI, MCI, and mAD. VGluT1-positive profile intensity in PreC did not differ across groups, while in FC it was greater in MCI, mAD, and sAD compared to NCI. VGluT2 measures were stable in PreC while FC had greater VGluT2-positive profile density in MCI compared to sAD, but not NCI or mAD. Spinophilin measures in PreC were lower in mAD and sAD compared to NCI, while in FC they were stable across groups. Lower VGluT1 and spinophilin measures in PreC, but not FC, correlated with greater neuropathology. CONCLUSION: Frank loss of VGluT1 in advanced AD relative to NCI occurs in both DMN regions. In FC, an upregulation of VGluT1 protein content in remaining glutamatergic terminals may contribute to this region's plasticity response in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Rede de Modo Padrão , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
14.
Acta Neuropathol ; 123(3): 433-47, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22271153

RESUMO

Amyloid-ß (Aß) deposits are detectable in the brain in vivo using positron emission tomography (PET) and [C-11]-labeled Pittsburgh Compound B ([C-11]PiB); however, the sensitivity of this technique is not well understood. In this study, we examined Aß pathology in an individual who had clinical diagnoses of probable dementia with Lewy bodies and possible Alzheimer's disease (AD) but with no detectable [C-11]PiB PET retention ([C-11]PiB(-)) when imaged 17 months prior to death. Brain samples were processed in parallel with region-matched samples from an individual with a clinical diagnosis of probable AD and a positive [C-11]PiB PET scan ([C-11]PiB(+)) when imaged 10 months prior to death. In the [C-11]PiB(-) case, Aß plaques were sparse, occupying less than 2% cortical area, and were weakly labeled with 6-CN-PiB, a highly fluorescent derivative of PiB. In contrast, Aß plaques occupied up to 12% cortical area in the [C-11]PiB(+) case, and were intensely labeled with 6-CN-PIB. The [C-11]PiB(-) case had low levels of [H-3]PiB binding (< 100 pmol/g) and Aß1-42 (< 500 pmol/g) concentration except in the frontal cortex where Aß1-42 values (788 pmol/g) approached cortical values in the [C-11]PiB(+) case (800-1, 700 pmol/g). In several cortical regions of the [C-11]PiB(-) case, Aß1-40 levels were within the range of cortical Aß1-40 values in the [C-11]PiB(+) case. Antemortem [C-11]PiB DVR values correlated well with region-matched postmortem measures of Aß1-42 and Aß1-40 in the [C-11]PiB(+), and with Aß1-42 only in the [C-11]PiB(-) case. The low ratios of [H-3]PiB binding levels to Aß concentrations and 6-CN-PiB to Aß plaque loads in the [C-11]PiB(-) case indicate that Aß pathology in the brain may be associated with low or undetectable levels of [C-11]PiB retention. Studies in greater numbers of [C-11]PiB PET autopsy cases are needed to define the Aß concentration and [H-3]PiB binding levels required to produce a positive [C-11]PiB PET signal.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Placa Amiloide/patologia , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Masculino , Emaranhados Neurofibrilares/diagnóstico por imagem , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/metabolismo , Cintilografia , Tiazóis
15.
Fluids Barriers CNS ; 19(1): 5, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012589

RESUMO

BACKGROUND: Altered cerebrovascular function and accumulation of amyloid-ß (Aß) after traumatic brain injury (TBI) can contribute to chronic neuropathology and increase the risk for Alzheimer's disease (AD). TBI due to a blast-induced shock wave (bTBI) adversely affects the neurovascular unit (NVU) during the acute period after injury. However, the chronic effects of bTBI and Aß on cellular components of the NVU and capillary network are not well understood. METHODS: We exposed young adult (age range: 76-106 days) female transgenic (Tg) APP/PS1 mice, a model of AD-like Aß amyloidosis, and wild type (Wt) mice to a single bTBI (~ 138 kPa or ~ 20 psi) or to a Sham procedure. At 3-months or 12-months survival after exposure, we quantified neocortical Aß load in Tg mice, and percent contact area between aquaporin-4 (AQP4)-immunoreactive astrocytic end-feet and brain capillaries, numbers of PDGFRß-immunoreactive pericytes, and capillary densities in both genotypes. RESULTS: The astroglia AQP4-capillary contact area in the Tg-bTBI group was significantly lower than in the Tg-Sham group at 3-months survival. No significant changes in the AQP4-capillary contact area were observed in the Tg-bTBI group at 12-months survival or in the Wt groups. Capillary density in the Tg-bTBI group at 12-months survival was significantly higher compared to the Tg-Sham control and to the Tg-bTBI 3-months survival group. The Wt-bTBI group had significantly lower capillary density and pericyte numbers at 12-months survival compared to 3-months survival. When pericytes were quantified relative to capillary density, no significant differences were detected among the experimental groups, for both genotypes. CONCLUSION: In conditions of high brain concentrations of human Aß, bTBI exposure results in reduced AQP4 expression at the astroglia-microvascular interface, and in chronic capillary proliferation like what has been reported in AD. Long term microvascular changes after bTBI may contribute to the risk for developing chronic neurodegenerative disease later in life.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Microvasos , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Traumatismos por Explosões/complicações , Traumatismos por Explosões/metabolismo , Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Microvasos/metabolismo , Microvasos/fisiopatologia
16.
Neuropathology ; 31(5): 503-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21269332

RESUMO

Alzheimer's disease (AD) is associated with neuronal degeneration, synaptic loss and deficits in multiple neurotransmitter systems. Alterations in the serotonin 1A (5-HT1A) receptor can contribute to impaired cognitive function in AD, and both in vitro binding and Positron emission tomography (PET) imaging studies have demonstrated that 5-HT1A receptors in the hippocampus/medial temporal cortex are affected early in AD. This neuropathological study examined the localization and immunoreaction intensity of 5-HT1A receptor protein in AD hippocampus with the goal to determine whether neuronal receptor levels are influenced by the severity of NFT severity defined by Braaks' pathological staging and to provide immunohistochemical confirmation of the binding assays and PET imaging studies. Subjects included AD patients and non-AD controls (NC) stratified into three Braaks' stages (Braak 0-II, NC; Braak III/IV and V/VI, AD). In the Braak 0-II group, 5-HT1A-immunoreactivity (ir) was prominent in the neuropil of the CA1 and subiculum, moderate in the dentate gyrus molecular layer (DGml), and low in the CA3 and CA4. No changes in 5-HT1A-ir were observed in the hippocampus of AD subjects in the Braak III/IV group. Hippocampal 5-HT1A-ir intensity was markedly decreased in the CA1 region in 6/11 (54.5%) subjects in the Braak V/VI group. Across all three groups combined, there was a statistically significant association between reduced 5HT1A-ir and neuronal loss in the CA1, but not in the CA3. The present data demonstrate that hippocampal 5-HT1A receptors are mainly preserved until the end-stage of NFT progression in AD. Thus, the utility of PET imaging using a 5-HT1A-specific radiolabeled probe as a marker of hippocampal neuronal loss may be limited to the CA1 field in advanced stage AD cases.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipocampo/química , Hipocampo/patologia , Receptor 5-HT1A de Serotonina/biossíntese , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/imunologia , Biomarcadores/química , Biomarcadores/metabolismo , Feminino , Hipocampo/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Células Piramidais/química , Células Piramidais/imunologia , Células Piramidais/patologia , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/deficiência
17.
Front Aging Neurosci ; 13: 728739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489686

RESUMO

Individuals with Down syndrome (DS) have a genetic predisposition for amyloid-ß (Aß) overproduction and earlier onset of Aß deposits compared to patients with sporadic late-onset Alzheimer's disease (AD). Positron emission tomography (PET) with Pittsburgh Compound-B (PiB) detects fibrillar Aß pathology in living people with DS and AD, but its relationship with heterogeneous Aß forms aggregated within amyloid deposits is not well understood. We performed quantitative in vitro 3H-PiB binding assays and enzyme-linked immunosorbent assays of fibrillar (insoluble) unmodified Aß40 and Aß42 forms and N-terminus truncated and pyroglutamate-modified AßNpE3-40 and AßNpE3-42 forms in postmortem frontal cortex and precuneus samples from 18 DS cases aged 43-63 years and 17 late-onset AD cases aged 62-99 years. Both diagnostic groups had frequent neocortical neuritic plaques, while the DS group had more severe vascular amyloid pathology (cerebral amyloid angiopathy, CAA). Compared to the AD group, the DS group had higher levels of Aß40 and AßNpE3-40, while the two groups did not differ by Aß42 and AßNpE3-42 levels. This resulted in lower ratios of Aß42/Aß40 and AßNpE3-42/AßNpE3-40 in the DS group compared to the AD group. Correlations of Aß42/Aß40 and AßNpE3-42/AßNpE3-40 ratios with CAA severity were strong in DS cases and weak in AD cases. Pyroglutamate-modified Aß levels were lower than unmodified Aß levels in both diagnostic groups, but within group proportions of both pyroglutamate-modified Aß forms relative to both unmodified Aß forms were lower in the DS group but not in the AD group. The two diagnostic groups did not differ by 3H-PiB binding levels. These results demonstrate that compared to late-onset AD cases, adult DS individuals with similar severity of neocortical neuritic plaques and greater CAA pathology have a preponderance of both pyroglutamate-modified AßNpE3-40 and unmodified Aß40 forms. Despite the distinct molecular profile of Aß forms and greater vascular amyloidosis in DS cases, cortical 3H-PiB binding does not distinguish between diagnostic groups that are at an advanced level of amyloid plaque pathology. This underscores the need for the development of CAA-selective PET radiopharmaceuticals to detect and track the progression of cerebral vascular amyloid deposits in relation to Aß plaques in individuals with DS.

18.
Nucl Med Biol ; 92: 85-96, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32471773

RESUMO

INTRODUCTION: Positron emission tomography (PET) using radiolabeled amyloid-binding compounds has advanced the field of Alzheimer's disease (AD) by enabling detection and longitudinal tracking of fibrillar amyloid-ß (Aß) deposits in living people. However, this technique cannot distinguish between Aß deposits in brain parenchyma (amyloid plaques) from those in blood vessels (cerebral amyloid angiopathy, CAA). Development of a PET radioligand capable of selectively detecting CAA would help clarify its contribution to global brain amyloidosis and clinical symptoms in AD and would help to characterize side-effects of anti-Aß immunotherapies in AD patients, such as CAA. METHODS: A candidate CAA-selective compound (1) from a panel of analogues of the amyloid-binding dye Congo red was synthesized. The binding affinity to Aß fibrils and lipophilicity of compound 1 were determined and selectivity for CAA versus parenchymal plaque deposits was assessed ex-vivo and in-vivo in transgenic APP/PS1 mice and in postmortem human brain affected with AD pathology. RESULTS: Compound 1 displays characteristics of Aß binding dyes, such as thioflavin-S, in that it labels both parenchymal Aß plaques and CAA when applied to histological sections from both a transgenic APP/PS1 mouse model of Aß amyloidosis and AD brain. Thus, compound 1 lacks molecular selectivity to distinguish Aß deposits in CAA from those in plaques. However, when administered to living APP/PS1 mice intravenously, compound 1 preferentially labels CAA when assessed using in-vivo two-photon microscopy and ex-vivo histology and autoradiography. CONCLUSION: We hypothesize that selectivity of compound 1 for CAA is attributable to its limited penetration of the blood-brain barrier due to the highly polar nature of the carboxylate moiety, thereby limiting access to parenchymal plaques and promoting selective in-vivo labeling of Aß deposits in the vascular wall (i.e., "delivery selectivity").


Assuntos
Angiopatia Amiloide Cerebral/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Camundongos , Traçadores Radioativos
19.
Ann Neurol ; 66(3): 407-14, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19798641

RESUMO

Elevations in beta-amyloid peptide (A beta) levels after traumatic brain injury (TBI) may confer risk for developing Alzheimer's disease in head trauma patients. We investigated the effects of simvastatin, a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, on hippocampal A beta burden in a clinically relevant head injury/intervention model using mice expressing human A beta. Simvastatin therapy blunted TBI-induced increases in A beta, reduced hippocampal tissue damage and microglial activation, and improved behavioral outcome. The ability of statins to reduce post-injury A beta load and ameliorate pathological sequelae of brain injury makes them potentially effective in reducing the risk of developing Alzheimer's disease in TBI patients.


Assuntos
Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/análise , Lesões Encefálicas/tratamento farmacológico , Hipocampo/química , Sinvastatina/uso terapêutico , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Equilíbrio Postural/efeitos dos fármacos , Fatores de Risco , Sinvastatina/farmacologia , Distribuição Tecidual/efeitos dos fármacos
20.
Exp Neurol ; 328: 113257, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32092298

RESUMO

The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors. BBB permeability changes after TBI result in leakage of serum proteins, influx of immune cells, perivascular inflammation, as well as impairment of efflux transporter systems and accumulation of aggregation-prone molecules involved in hallmark pathologies of neurodegenerative diseases with dementia. In addition, cerebral vascular dysfunction with persistent alterations in cerebral blood flow and neurovascular coupling contribute to brain ischemia, neuronal degeneration, and synaptic dysfunction. While the idea of TBI as a risk factor for dementia is supported by many shared pathological features, it remains a hypothesis that needs further testing in experimental models and in human studies. The current review focusses on pathological mechanisms shared between TBI and neurodegenerative disorders characterized by accumulation of pathological protein aggregates, such as Alzheimer's disease and chronic traumatic encephalopathy. We discuss critical knowledge gaps in the field that need to be explored to clarify the relationship between TBI and risk for dementia and emphasize the need for longitudinal in vivo studies using imaging and biomarkers of BBB dysfunction in people with single or multiple TBI.


Assuntos
Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/patologia , Demência/patologia , Animais , Barreira Hematoencefálica/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Demência/etiologia , Demência/fisiopatologia , Humanos , Acoplamento Neurovascular/fisiologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa