Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999049

RESUMO

Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors.


Assuntos
Proteínas Hedgehog , Simulação de Acoplamento Molecular , Piridinas , Pirimidinas , Proteína GLI1 em Dedos de Zinco , Piridinas/farmacologia , Piridinas/química , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Pirimidinas/farmacologia , Pirimidinas/química , Proteínas Hedgehog/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Células NIH 3T3 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
2.
Biochim Biophys Acta Gen Subj ; 1868(11): 130692, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39151833

RESUMO

Sonic hedgehog (Shh) is a morphogen with important roles in embryonic development and in the development of a number of cancers. Its activity is modulated by interactions with binding partners and co-receptors including heparin and heparin sulfate proteoglycans (HSPG). To identify antagonists of Shh/heparin binding, a diverse collection of 34,560 chemicals was screened in single point 384-well format. We identified and confirmed twenty six novel small molecule antagonists with diverse structures including four scaffolds that gave rise to multiple hits. Nineteen of the confirmed hits blocked binding of the N-terminal fragment of Shh (ShhN) to heparin with IC50 values < 50 µM. In the Shh-responsive C3H10T1/2 cell model, four of the compounds demonstrated the ability to block ShhN-induced alkaline phosphatase activity. To demonstrate a direct and selective effect on ShhN ligand mediated activity, two of the compounds were able to block induction of Gli1 mRNA, a primary downstream marker for Shh signaling activity, in Shh-mediated but not Smoothened agonist (SAG)-mediated C3H10T1/2 cells. Direct binding of the two compounds to ShhN was confirmed by thermal shift assay and molecular docking simulations, with both compounds docking with the N-terminal heparin binding domain of Shh. Overall, our findings indicate that small molecule compounds that block ShhN binding to heparin and act to inhibit Shh mediated activity in vitro can be identified. We propose that the interaction between Shh and HSPGs provides a novel target for identifying small molecules that bind Shh, potentially leading to novel tool compounds to probe Shh ligand function.


Assuntos
Proteínas Hedgehog , Heparina , Bibliotecas de Moléculas Pequenas , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Heparina/metabolismo , Heparina/química , Animais , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Camundongos , Humanos , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores
3.
Adv Cancer Res ; 152: 225-262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34353439

RESUMO

Inhibitor of growth family member 4 (ING4) is best known as a tumor suppressor that is frequently downregulated, deleted, or mutated in many cancers. ING4 regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, autophagy, invasion, angiogenesis, DNA repair and chromatin remodeling. ING4 alters local chromatin structure by functioning as an epigenetic reader of H3K4 trimethylation histone marks (H3K4Me3) and regulating gene transcription through directing histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes. ING4 may serve as a useful prognostic biomarker for many cancer types and help guide treatment decisions. This review provides an overview of ING4's central functions in gene expression and summarizes current literature on the role of ING4 in cancer and its possible use in therapy.


Assuntos
Neoplasias , Proteínas Supressoras de Tumor , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proteínas de Homeodomínio , Humanos , Neoplasias/tratamento farmacológico , Proteínas Supressoras de Tumor/genética
4.
Int J Nanomedicine ; 14: 2655-2665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118606

RESUMO

Background: Carbon dots (CDots) have recently been demonstrated their effective visible light-activated antimicrobial activities toward bacteria. This study was to evaluate and understand the roles of the surface functionalities in governing the antimicrobial activity of CDots. Methods: Using the laboratory model bacteria Bacillus subtilis, the photo-activated antimicrobial activities of three groups of CDots with specifically selected different surface functionalization moieties were evaluated and compared. The first group consisting of CDots with surface functionalization by 2,2-(ethylenedioxy)bis(ethylamine) (EDA) vs. 3-ethoxypropylamine (EPA), was evaluated to determine the effect of different terminal groups/charges on their photo-activated antibacterial activities. The second group consisting of CDots functionalized with oligomeric polyethylenimine (PEI) and those prepared by the carbonization of PEI - citric acid mixture, was to evaluate the effects of dot surface charges vs. fluorescent quantum yields on their antimicrobial activities. The third group consisting of CDots functionalized with PEI of 1,200 vs. 600 in average molecular weight was evaluated for the effect of molecular weight of surface passivation molecular on their antimicrobial activities. Results: The results indicated the EDA-CDots in the first group was more effective and was attributed to the positive charges from the protonation of the amino groups (-NH2) being more favorable to interactions with bacterial cells. The evaluation of the second group CDots suggested the same surface charge effect dominating the antibacterial performance over the fluorescent quantum yields. The evaluation of the third group CDots functionalized with PEI of 1,200 vs. 600 in average molecular weight, indicated the latter was significantly more effective. Conclusions: The results from this study highlighted the dominant role of surface functionalities in governing CDots' light activated antimicrobial activity and should have significant implications to the further design and development of CDots as a new class of visible light-activated antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Carbono/farmacologia , Luz , Bacillus subtilis/efeitos dos fármacos , Etilaminas/química , Testes de Sensibilidade Microbiana , Polietilenoimina/química , Propilaminas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa