Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Genet ; 61(2): 451-470, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36057909

RESUMO

Glucosinolates (GSLs) and GSL-associated genes are receiving increasing attention from molecular biologists due to their multifunctional properties. GSLs are secondary metabolites considered to be highly active in most Brassica species. Their importance has motivated the discovery and functional analysis of the GSLs and GSL hydrolysis products involved in disease development in brassicas and other plants. Comprehensive knowledge of the GSL content of Brassica species and the molecular details of GSL-related genes will help elucidate the molecular control of this plant defense system. This report provides an overview of the current status of knowledge on GSLs, GSL biosynthesis, as well as hydrolysis related genes, and GSL hydrolysis products that regulate fungal, bacterial, and insect resistance in cabbage and other brassicas.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Glucosinolatos/genética , Glucosinolatos/metabolismo
2.
BMC Genet ; 20(1): 42, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029104

RESUMO

BACKGROUND: Cabbage (Brassica oleracea var. capitata) is popular worldwide for consumption as a leafy vegetable. Premature flowering is triggered by low temperature, and deteriorates quality of cabbage as vegetable. In general, growers prefer late-flowering varieties to assure good quality compact head. Here, we report BoFLC1.C9 as a gene with clear sequence variation between cabbage lines with different flowering times, and proposed as molecular marker to characterize early- and late-flowering cabbage lines. RESULTS: We identified sequence variation of 67 bp insertions in intron 2, which were contributed in flowering time variation between two inbred lines through rapid down-regulation of the BoFLC1.C9 gene in early-flowering line compared to late-flowering one upon vernalization. One set of primer 'F7R7' proposed as marker, of which was explained with 83 and 80% of flowering time variation in 141 F2 individuals and 20 commercial lines, respectively. CONCLUSIONS: This F7R7 marker could be used as genetic tools to characterize flowering time variation and to select as well to develop early- and late-flowering cabbage cultivars.


Assuntos
Brassica/genética , Flores/genética , Genes de Plantas , Variação Genética , Genótipo , Desenvolvimento Vegetal/genética , Brassica/classificação , Regulação da Expressão Gênica de Plantas , Íntrons , Filogenia , Polimorfismo Genético
3.
Int J Mol Sci ; 20(11)2019 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-31159510

RESUMO

Acidovorax citrulli (A. citrulli) strains cause bacterial fruit blotch (BFB) in cucurbit crops and affect melon significantly. Numerous strains of the bacterium have been isolated from melon hosts globally. Strains that are aggressively virulent towards melon and diagnostic markers for detecting such strains are yet to be identified. Using a cross-inoculation assay, we demonstrated that two Korean strains of A. citrulli, NIHHS15-280 and KACC18782, are highly virulent towards melon but avirulent/mildly virulent to the other cucurbit crops. The whole genomes of three A. citrulli strains isolated from melon and three from watermelon were aligned, allowing the design of three primer sets (AcM13, AcM380, and AcM797) that are specific to melon host strains, from three pathogenesis-related genes. These primers successfully detected the target strain NIHHS15-280 in polymerase chain reaction (PCR) assays from a very low concentration of bacterial gDNA. They were also effective in detecting the target strains from artificially infected leaf, fruit, and seed washing suspensions, without requiring the extraction of bacterial DNA. This is the first report of PCR-based markers that offer reliable, sensitive, and rapid detection of strains of A. citrulli causing BFB in melon. These markers may also be useful in early disease detection in the field samples, in seed health tests, and for international quarantine purposes.


Assuntos
Comamonadaceae/isolamento & purificação , Cucurbitaceae/microbiologia , Doenças das Plantas/microbiologia , Comamonadaceae/genética , Produtos Agrícolas/microbiologia , DNA Bacteriano/análise , DNA Bacteriano/genética , Frutas/microbiologia , Genoma Bacteriano , Reação em Cadeia da Polimerase
4.
Int J Mol Sci ; 19(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235823

RESUMO

Ringspot, caused by the fungus Mycosphaerella brassicicola, is a serious disease of Brassica crops worldwide. Despite noteworthy progress to reveal the role of glucosinolates in pathogen defense, the host⁻pathogen interaction between cabbage (Brassica oleracea) and M. brassicicola has not been fully explored. Here, we investigated the glucosinolate profiles and expression of glucosinolate biosynthesis genes in the ringspot-resistant (R) and susceptible (S) lines of cabbage after infection with M. brassicicola. The concomitant rise of aliphatic glucoiberverin (GIV) and indolic glucobrassicin (GBS) and methoxyglucobrassicin (MGBS) was linked with ringspot resistance in cabbage. Pearson's correlation and principle component analysis showed a significant positive association between GIV contents and the expression of the glucosinolate biosynthesis gene ST5b-Bol026202 and between GBS contents and the expression of the glucosinolate biosynthesis gene MYB34-Bol017062. Our results confirmed that M. brassicicola infection induces the expression of glucosinolate biosynthesis genes in cabbage, which alters the content of individual glucosinolates. This link between the expression of glucosinolate biosynthesis genes and the accumulation of their respective glucosinolates with the resistance to ringspot extends our molecular sense of glucosinolate-negotiated defense against M. brassicicola in cabbage.


Assuntos
Brassica/genética , Resistência à Doença/genética , Genes de Plantas , Glucosinolatos/biossíntese , Ascomicetos/patogenicidade , Brassica/metabolismo , Brassica/microbiologia , Glucosinolatos/genética
5.
Int J Mol Sci ; 19(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551645

RESUMO

Sclerotinia stem rot (white mold), caused by the fungus Sclerotinia sclerotiorum, is a serious disease of Brassica crops worldwide. Despite considerable progress in investigating plant defense mechanisms against this pathogen, which have revealed the involvement of glucosinolates, the host⁻pathogen interaction between cabbage (Brassica oleracea) and S. sclerotiorum has not been fully explored. Here, we investigated glucosinolate profiles and the expression of glucosinolate biosynthesis genes in white-mold-resistant (R) and -susceptible (S) lines of cabbage after infection with S. sclerotiorum. The simultaneous rise in the levels of the aliphatic glucosinate glucoiberverin (GIV) and the indolic glucosinate glucobrassicin (GBS) was linked to white mold resistance in cabbage. Principal component analysis showed close association between fungal treatment and cabbage GIV and GBS contents. The correlation analysis showed significant positive associations between GIV content and expression of the glucosinolate biosynthesis genes ST5b-Bol026202 and ST5c-Bol030757, and between GBS content and the expression of the glucosinolate biosynthesis genes ST5a-Bol026200 and ST5a-Bol039395. Our results revealed that S. sclerotiorum infection of cabbage induces the expression of glucosinolate biosynthesis genes, altering the content of individual glucosinolates. This relationship between the expression of glucosinolate biosynthesis genes and accumulation of the corresponding glucosinolates and resistance to white mold extends the molecular understanding of glucosinolate-negotiated defense against S. sclerotiorum in cabbage.


Assuntos
Vias Biossintéticas , Brassica/microbiologia , Resistência à Doença , Glucosinolatos/análise , Ascomicetos/patogenicidade , Brassica/química , Brassica/genética , Regulação da Expressão Gênica de Plantas , Glucosinolatos/biossíntese , Doenças das Plantas/microbiologia , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Análise de Componente Principal , Metabolismo Secundário
6.
Front Plant Sci ; 11: 1134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849695

RESUMO

The fungal pathogen, Leptosphaeria maculans causes a severe and economically important disease to Brassica crops globally, well-known as blackleg. Besides, the anti-oxidative defense response of glucosinolates to fungal pathogens is widely established. Despite notable importance of glucosinolates in blackleg disease resistance the association of glucosinolate pathway genes in glucosinolate mediated defense response after L. maculans infection remains incompletely understood. The current study was designed to identify glucosinolate-biosynthesis specific genes among the eight selected candidates induced by L. maculans and associated alterations in glucosinolate profiles to explore their roles in blackleg resistance at the seedling stage of cabbage plants. The defense responses of four cabbage inbred lines, two resistant and two susceptible, were investigated using two L. maculans isolates, 03-02s and 00-100s. Pathogen-induced glucosinolate accumulation dynamically changed from two days after inoculation to four days after inoculation. In general, glucosinolate biosynthetic genes were induced at 24 h after inoculation and glucosinolate accumulation enhanced at two days after inoculation. An increase in either aliphatic (GIB, GRA) or indolic (GBS and MGBS) glucosinolates was associated with seedling resistance of cabbage. Pearson correlation showed the enhanced accumulation of MGBS, GBS, GIB, GIV and GRA after the inoculation of fungal isolates was associated with expression of specific genes. Principal component analysis separated two resistant cabbage lines-BN4098 and BN4303 from two susceptible cabbage lines-BN4059 and BN4072 for variable coefficients of disease scores, glucosinolate accumulation and expression levels of genes. Enhanced MGBS content against both fungal isolates, contributing to seedling resistance in two interactions-BN4098 × 03-02s and BN4303 × 00-100s and enhanced GBS content only in BN4098 × 03-02s interaction. Aliphatic GRA took part in resistance of BN4098 × 00-100s interaction whereas aliphatic GIB took part is resistance of BN4098 × 03-02s interaction. Aliphatic GIV accumulated upon BN4098 × 03-02s interaction but GSL-OH-Bol033373 and CYP81F2-Bol026044 showed enhanced expression in BN4303 × 03-02s interaction. The association between the selected candidate genes, corresponding glucosinolates, and seedling resistance broaden the horizon of glucosinolate conciliated defense against L. maculans in cabbage seedlings.

7.
Plants (Basel) ; 9(9)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872597

RESUMO

Cabbage (Brassica oleracea var. capitata) is an economically important crop in the family Brassicaceae. Black rot disease is a top ranked cabbage disease, which is caused by Xanthomonas campestris pv. campestris (Xcc) and may reduce 50% crop loss. Therefore, we need a clear understanding of black rot disease resistance for sustainable disease management. The secondary metabolites, like Glucosinolate (GSL) presents in Brassica species, which plays a potential role in the defense mechanism against pathogens. However, there is little known about GSL-regulated resistance mechanisms and GSL biosynthesis and the breakdown related gene expression after black rot disease infection in cabbage. In this study, relative expression of 43 biosynthetic and breakdown related GSLs were estimated in the black rot resistant and susceptible cabbage lines after Xcc inoculation. Ten different types of GSL from both aliphatic and indolic groups were identified in the contrasting cabbage lines by HPLC analysis, which included six aliphatic and four indolic compounds. In the resistant line, nine genes (MYB122-Bol026204, MYB34-Bol017062, AOP2-Bo9g006240, ST5c-Bol030757, CYP81F1-Bol017376, CYP81F2-Bol012237, CYP81F4-Bol032712, CYP81F4-Bol032714 and PEN2-Bol030092) showed consistent expression patterns. Pearson's correlation coefficient showed positive and significant association between aliphatic GSL compounds and expression values of ST5c-Bol030757 and AOP2-Bo9g006240 genes as well as between indolic GSL compounds and the expression of MYB34-Bol017062, MYB122-Bol026204, CYP81F2-Bol012237, CYP81F4-Bol032712 and CYP81F4-Bol032714 genes. This study helps in understanding the role of GSL biosynthesis and breakdown related genes for resistance against black rot pathogen in cabbage, which could be further confirmed through functional characterization either by overexpression or knock-out mutation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa