Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(7): e22378, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639414

RESUMO

Structural discovery of guanine nucleotide exchange factor (GEF) protein complexes is likely to become increasingly relevant with the development of new therapeutics targeting small GTPases and development of new classes of small molecules that inhibit protein-protein interactions. Syx (also known as PLEKHG5 in humans) is a RhoA GEF implicated in the pathology of glioblastoma (GBM). Here we investigated protein expression and purification of ten different human Syx constructs and performed biophysical characterizations and computational studies that provide insights into why expression of this protein was previously intractable. We show that human Syx can be expressed and isolated and Syx is folded as observed by circular dichroism (CD) spectroscopy and actively binds to RhoA as determined by co-elution during size exclusion chromatography (SEC). This characterization may provide critical insights into the expression and purification of other recalcitrant members of the large class of oncogenic-Diffuse B-cell lymphoma (Dbl) homology GEF proteins. In addition, we performed detailed homology modeling and molecular dynamics simulations on the surface of a physiologically realistic membrane. These simulations reveal novel insights into GEF activity and allosteric modulation by the plekstrin homology (PH) domain. These newly revealed interactions between the GEF PH domain and the membrane embedded region of RhoA support previously unexplained experimental findings regarding the allosteric effects of the PH domain from numerous activity studies of Dbl homology GEF proteins. This work establishes new hypotheses for structural interactivity and allosteric signal modulation in Dbl homology RhoGEFs.


Assuntos
Glioblastoma , Fatores de Troca de Nucleotídeo Guanina Rho , Glioblastoma/genética , Fatores de Troca do Nucleotídeo Guanina , Humanos , Proteínas , Fatores de Troca de Nucleotídeo Guanina Rho/genética
2.
Protein Expr Purif ; 185: 105890, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33971243

RESUMO

Human G-protein coupled receptor kinase 6 (GRK6) belongs to the GRK4 kinase subfamily of the G protein-coupled receptor kinase family which comprises of GRK1, GRK2, and GRK4. These kinases phosphorylate ligand-activated G-protein coupled receptors (GPCRs), driving heterotrimeric G protein coupling, desensitization of GPCR, and ß-arrestin recruitment. This reaction series mediates cellular signal pathways for cell survival, proliferation, migration and chemotaxis. GRK6 is a kinase target in multiple myeloma since it is highly expressed in myeloma cells compared to epithelial cells and has a significant role in mediating the chemotactic responses of T and B-lymphocytes. To support structure-based drug design, we describe three human GRK6 constructs, GRK6, GRK6His/EK, and GRK6His/TEV, designed for protein expression in Spodoptera frugiperda Sf9 insect cells. The first construct did not contain any purification tag whereas the other two constructs contained the His10 affinity tag, which increased purification yields. We report here that all three constructs of GRK6 were overexpressed in Sf9 insect cells and purified to homogeneity at levels that were suitable for co-crystallization of GRK6 with potential inhibitors. The yields of purified GRK6, GRK6His/EK, and GRK6His/TEV were 0.3 mg, 0.8 mg and 0.7 mg per liter of cell culture, respectively. In addition, we have shown that GRK6His/TEV with the His10 tag removed was highly homogeneous and monodisperse as observed by dynamic light scattering measurement and actively folded as exhibited by circular dichroism spectroscopy. The described methods will support the structure-based development of additional therapeutics against multiple myeloma.


Assuntos
Quinases de Receptores Acoplados a Proteína G/isolamento & purificação , Proteínas de Neoplasias/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Animais , Antineoplásicos/síntese química , Baculoviridae/genética , Baculoviridae/metabolismo , Cromatografia/métodos , Clonagem Molecular , Desenho de Fármacos , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células Sf9 , Spodoptera
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa