Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31915278

RESUMO

One step of the life cycle common to all rotaviruses (RV) studied so far is the formation of viroplasms, membrane-less cytosolic inclusions providing a microenvironment for early morphogenesis and RNA replication. Viroplasm-like structures (VLS) are simplified viroplasm models consisting of complexes of nonstructural protein 5 (NSP5) with the RV core shell VP2 or NSP2. We identified and characterized the domains required for NSP5-VP2 interaction and VLS formation. VP2 mutations L124A, V865A, and I878A impaired both NSP5 hyperphosphorylation and NSP5/VP2 VLS formation. Moreover, NSP5-VP2 interaction does not depend on NSP5 hyperphosphorylation. The NSP5 tail region is required for VP2 interaction. Notably, VP2 L124A expression acts as a dominant-negative element by disrupting the formation of either VLS or viroplasms and blocking RNA synthesis. In silico analyses revealed that VP2 L124, V865, and I878 are conserved among RV species A to H. Detailed knowledge of the protein interaction interface required for viroplasm formation may facilitate the design of broad-spectrum antivirals to block RV replication.IMPORTANCE Alternative treatments to combat rotavirus infection are a requirement for susceptible communities where vaccines cannot be applied. This demand is urgent for newborn infants, immunocompromised patients, adults traveling to high-risk regions, and even for the livestock industry. Aside from structural and physiological divergences among RV species studied before now, all replicate within cytosolic inclusions termed viroplasms. These inclusions are composed of viral and cellular proteins and viral RNA. Viroplasm-like structures (VLS), composed of RV protein NSP5 with either NSP2 or VP2, are models for investigating viroplasms. In this study, we identified a conserved amino acid in the VP2 protein, L124, necessary for its interaction with NSP5 and the formation of both VLSs and viroplasms. As RV vaccines cover a narrow range of viral strains, the identification of VP2 L124 residue lays the foundations for the design of drugs that specifically block NSP5-VP2 interaction as a broad-spectrum RV antiviral.


Assuntos
Proteínas do Capsídeo/química , Citosol/virologia , Rotavirus/fisiologia , Proteínas não Estruturais Virais/química , Proteínas Virais/química , Animais , Proteínas do Capsídeo/genética , Chlorocebus aethiops , Simulação por Computador , Genes Dominantes , Cobaias , Células HEK293 , Humanos , Macaca mulatta , Camundongos , Mutação , Fosforilação , Ligação Proteica , Domínios Proteicos , RNA Viral/biossíntese , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética , Replicação Viral
2.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31748397

RESUMO

Fibropapillomatosis (FP) is a tumor disease associated with a herpesvirus (chelonid herpesvirus 5 [ChHV5]) that affects mainly green turtles globally. Understanding the epidemiology of FP has been hampered by a lack of robust serological assays to monitor exposure to ChHV5. This is due in part to an inability to efficiently culture the virus in vitro for neutralization assays. Here, we expressed two glycoproteins (FUS4 and FUS8) from ChHV5 using baculovirus. These proteins were immobilized on enzyme-linked immunosorbent assay plates in their native form and assayed for reactivity to two types of antibodies, full-length 7S IgY and 5.7S IgY, which has a truncated Fc region. Turtles from Florida were uniformly seropositive to ChHV5 regardless of tumor status. In contrast, in turtles from Hawaii, we detected strong antibody reactivity mainly in tumored animals, with a lower antibody response being seen in nontumored animals, including those from areas where FP is enzootic. Turtles from Hawaii actively shedding ChHV5 were more seropositive than nonshedders. In trying to account for differences in the serological responses to ChHV5 between green turtles from Hawaii and green turtles from Florida, we rejected the cross-reactivity of antibodies to other herpesviruses, differences in viral epitopes, or differences in procedure as likely explanations. Rather, behavioral or other differences between green turtles from Hawaii and green turtles from Florida might have led to the emergence of biologically different viral strains. While the strains from turtles in Florida apparently spread independently of tumors, the transmission of the Hawaiian subtype relies heavily on tumor formation.IMPORTANCE Fibropapillomatosis (FP) is a tumor disease associated with chelonid herpesvirus 5 (ChHV5) that is an important cause of mortality in threatened green turtles globally. FP is expanding in Florida and the Caribbean but declining in Hawaii. We show that Hawaiian turtles mount antibodies to ChHV5 mainly in response to tumors, which are the only sites of viral replication, whereas tumored and nontumored Floridian turtles are uniformly seropositive. Tumor viruses that depend on tumors for replication and spread are rare, with the only example being the retrovirus causing walleye dermal sarcoma in fish. The Hawaiian strain of ChHV5 may be the first DNA virus with such an unusual life history. Our findings, along with the fundamental differences in the life histories between Floridian turtles and Hawaiian turtles, may partly explain the differential dynamics of FP between the two regions.


Assuntos
Alphaherpesvirinae/imunologia , Formação de Anticorpos/imunologia , Tartarugas/imunologia , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Animais , Vírus de DNA , Florida , Glicoproteínas/imunologia , Havaí , Herpesviridae/genética , Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Papiloma/virologia , Filogenia , Neoplasias Cutâneas/virologia , Infecções Tumorais por Vírus/virologia , Tartarugas/virologia
3.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32024777

RESUMO

Malignant catarrhal fever (MCF) is a rare but frequently lethal disease of certain cloven-hoofed animals. At least 10 different viruses, all members of the Macavirus genus in the subfamily Gammaherpesvirinae, are known as causative agents of MCF. Among these, ovine herpesvirus 2 (OvHV-2) is the most frequent and economically most important MCF agent. Phenotypically, MCF is characterized by severe lymphocytic arteritis-periarteritis, which leads to the accumulation of activated lymphocytes accompanied by apoptosis and necrosis in a broad range of tissues. However, a viral factor that might be responsible for tissue damage has not yet been identified. We have studied a seemingly intergenic locus on the OvHV-2 genome, which was previously shown to be transcriptionally highly active in MCF-affected tissue. We identified by 5' and 3' rapid amplification of cDNA ends (RACE) a conserved, double-spliced transcript that encoded a 9.9-kDa hydrophobic protein. The newly detected gene, Ov8.25, and its splicing pattern were conserved among OvHV-2 strains of different origins. Upon transient expression of synthetic variants of this gene in various cell types, including bovine lymphocytes, the protein (pOv8.25) was shown to target mitochondria, followed by caspase-dependent apoptosis and necrosis. Notably, a deletion mutant of the same protein lost these abilities. Finally, we detected pOv8.25 in brain-infiltrating lymphocytes of cattle with MCF. Thus, the cell death-causing properties of pOv8.25 in affected cells may be involved in the emergence of typical MCF-associated apoptosis and necrosis. Thus, we have identified a novel OvHV-2 protein, which might contribute to the phenotype of MCF-related lesions.IMPORTANCE Ovine herpesvirus 2 (OvHV-2) circulates among sheep without causing disease. However, upon transmission to cattle, the same virus instigates a frequently lethal disease, malignant catarrhal fever (MCF). While the cause of death and pathogenesis of tissue lesions are still poorly understood, MCF is characterized by the accumulation of lymphocytes in various tissues, associated with vasculitis and cell death. As infectious virus is hardly present in these lesions, the cause of cell death cannot be explained simply by viral replication. The significance of our research is in identifying and characterizing a previously overlooked gene of OvHV-2 (Ov8.25), which is highly expressed in animals with MCF. Its encoded protein targets mitochondria, causing apoptosis and necrosis, thus contributing to an understanding of the source and nature of cell death. As the corresponding genetic locus is also active in the context of MCF due to a different macavirus, we may have detected a common denominator of the disease phenotype.


Assuntos
Apoptose , Gammaherpesvirinae/genética , Gammaherpesvirinae/metabolismo , Mitocôndrias/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Doenças do Gato/virologia , Gatos , Bovinos , Linhagem Celular , Chlorocebus aethiops , Linfócitos , Febre Catarral Maligna/patologia , Febre Catarral Maligna/virologia , Mitocôndrias/patologia , Necrose/virologia , Alinhamento de Sequência , Ovinos , Doenças dos Ovinos/virologia , Células Vero , Proteínas Virais/isolamento & purificação
4.
J Gen Virol ; 100(6): 985-998, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31084699

RESUMO

Equine papillomavirus type 2 (EcPV2) was discovered only recently, but it is found consistently in the context of genital squamous cell carcinomas (SCCs). Since neither cell cultures nor animal models exist, the characterization of this potential disease agent relies on the analysis of patient materials. To analyse the host and viral transcriptome in EcPV2-affected horses, genital tissue samples were collected from horses with EcPV2-positive lesions as well as from healthy EcPV2-negative horses. It was determined by RNA-seq analysis that there were 1957 differentially expressed (DE) host genes between the SCC and control samples. These genes were most abundantly related to DNA replication, cell cycle, extracellular matrix (ECM)-receptor interaction and focal adhesion. By comparison to other cancer studies, MMP1 and IL8 appeared to be potential marker genes for the development of SCCs. Analysis of the viral reads revealed the transcriptional activity of EcPV2 in all SCC samples. While few reads mapped to the structural viral genes, the majority of reads mapped to the non-structural early (E) genes, in particular to E6, E7 and E2/E4. Within these reads a distinct pattern of splicing events, which are essential for the expression of different genes in PV infections, was observed. Additionally, in one sample the integration of EcPV2 DNA into the host genome was detected by DNA-seq and confirmed by PCR. In conclusion, while host MMP1 and IL8 expression and the presence of EcPV2 may be useful markers in genital SCCs, further research on EcPV2-related pathomechanisms may focus on cell cycle-related genes, the viral genes E6, E7 and E2/E4, and integration events.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Viral da Expressão Gênica/genética , Doenças dos Cavalos/genética , Papillomaviridae/genética , Infecções por Papillomavirus/genética , Splicing de RNA/genética , Transdução de Sinais/genética , Animais , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/virologia , DNA Viral/genética , Genes Virais/genética , Doenças dos Cavalos/virologia , Cavalos/genética , Cavalos/virologia , Interleucina-8/genética , Metaloproteinase 1 da Matriz/genética , Infecções por Papillomavirus/veterinária , Infecções por Papillomavirus/virologia , Reação em Cadeia da Polimerase/métodos , RNA-Seq/métodos , Transcrição Gênica/genética
5.
J Gen Virol ; 100(3): 497-510, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30694168

RESUMO

Bovine herpesvirus 1 (BoHV-1)-encoded UL49.5 (a homologue of herpesvirus glycoprotein N) can combine different functions, regulated by complex formation with viral glycoprotein M (gM). We aimed to identify the mechanisms governing the immunomodulatory activity of BoHV-1 UL49.5. In this study, we addressed the impact of gM/UL49.5-specific regions on heterodimer formation, folding and trafficking from the endoplasmic reticulum (ER) to the trans-Golgi network (TGN) - events previously found to be responsible for abrogation of the UL49.5-mediated inhibition of the transporter associated with antigen processing (TAP). We first established, using viral mutants, that no other viral protein could efficiently compensate for the chaperone function of UL49.5 within the complex. The cytoplasmic tail of gM, containing putative trafficking signals, was dispensable either for ER retention of gM or for the release of the complex. We constructed cell lines with stable co-expression of BoHV-1 gM with chimeric UL49.5 variants, composed of the BoHV-1 N-terminal domain fused to the transmembrane region (TM) from UL49.5 of varicella-zoster virus or TM and the cytoplasmic tail of influenza virus haemagglutinin. Those membrane-anchored N-terminal domains of UL49.5 were sufficient to form a complex, yet gM/UL49.5 folding and ER-TGN trafficking could be affected by the UL49.5 TM sequence. Finally, we found that leucine substitutions in putative glycine zipper motifs within TM helices of gM resulted in strong reduction of complex formation and decreased ability of gM to interfere with UL49.5-mediated major histocompatibility class I downregulation. These findings highlight the importance of gM/UL49.5 transmembrane domains for the biology of this conserved herpesvirus protein complex.


Assuntos
Doenças dos Bovinos/virologia , Retículo Endoplasmático/virologia , Complexo de Golgi/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Bovinos , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/química , Herpesvirus Bovino 1/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
6.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142132

RESUMO

Despite the availability of two attenuated vaccines, rotavirus (RV) gastroenteritis remains an important cause of mortality among children in developing countries, causing about 215,000 infant deaths annually. Currently, there are no specific antiviral therapies available. RV is a nonenveloped virus with a segmented double-stranded RNA genome. Viral genome replication and assembly of transcriptionally active double-layered particles (DLPs) take place in cytoplasmic viral structures called viroplasms. In this study, we describe strong impairment of the early stages of RV replication induced by a small molecule known as an RNA polymerase III inhibitor, ML-60218 (ML). This compound was found to disrupt already assembled viroplasms and to hamper the formation of new ones without the need for de novo transcription of cellular RNAs. This phenotype was correlated with a reduction in accumulated viral proteins and newly made viral genome segments, disappearance of the hyperphosphorylated isoforms of the viroplasm-resident protein NSP5, and inhibition of infectious progeny virus production. In in vitro transcription assays with purified DLPs, ML showed dose-dependent inhibitory activity, indicating the viral nature of its target. ML was found to interfere with the formation of higher-order structures of VP6, the protein forming the DLP outer layer, without compromising its ability to trimerize. Electron microscopy of ML-treated DLPs showed dose-dependent structural damage. Our data suggest that interactions between VP6 trimers are essential, not only for DLP stability, but also for the structural integrity of viroplasms in infected cells.IMPORTANCE Rotavirus gastroenteritis is responsible for a large number of infant deaths in developing countries. Unfortunately, in the countries where effective vaccines are urgently needed, the efficacy of the available vaccines is particularly low. Therefore, the development of antivirals is an important goal, as they might complement the available vaccines or represent an alternative option. Moreover, they may be decisive in fighting the acute phase of infection. This work describes the inhibitory effect on rotavirus replication of a small molecule initially reported as an RNA polymerase III inhibitor. The molecule is the first chemical compound identified that is able to disrupt viroplasms, the viral replication machinery, and to compromise the stability of DLPs by targeting the viral protein VP6. This molecule thus represents a starting point in the development of more potent and less cytotoxic compounds against rotavirus infection.


Assuntos
RNA Polimerase III/antagonistas & inibidores , Rotavirus/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Estruturas Virais/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Rotavirus/química , Rotavirus/efeitos dos fármacos , Células Sf9 , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
7.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29229735

RESUMO

Bacillus subtilis is known as an endospore- and biofilm-forming bacterium with probiotic properties. We have recently developed a method for displaying heterologous proteins on the surface of B. subtilis biofilms by introducing the coding sequences of the protein of interest into the bacterial genome to generate a fusion protein linked to the C terminus of the biofilm matrix protein TasA. Although B. subtilis is a regular component of the gut microflora, we constructed a series of recombinant B. subtilis strains that were tested for their ability to be used to immunize dogs following oral application of the spores. Specifically, we tested recombinant spores of B. subtilis carrying either the fluorescent protein mCherry or else selected antigenic peptides (tropomyosin and paramyosin) from Echinococcus granulosus, a zoonotic intestinal tapeworm of dogs and other carnivores. The application of the recombinant B. subtilis spores led to the colonization of the gut with recombinant B. subtilis but did not cause any adverse effect on the health of the animals. As measured by enzyme-linked immunosorbent assay and immunoblotting, the dogs were able to develop a humoral immune response against mCherry as well as against E. granulosus antigenic peptides. Interestingly, the sera of dogs obtained after immunization with recombinant spores of E. granulosus peptides were able to recognize E. granulosus protoscoleces, which represent the infective form of the head of the tapeworms. These results represent an essential step toward the establishment of B. subtilis as an enteric vaccine agent.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/imunologia , Bacillus subtilis/genética , Doenças do Cão/imunologia , Equinococose/veterinária , Echinococcus granulosus/imunologia , Tropomiosina/imunologia , Animais , Antígenos de Helmintos/administração & dosagem , Antígenos de Helmintos/genética , Bacillus subtilis/fisiologia , Biofilmes , Doenças do Cão/parasitologia , Doenças do Cão/prevenção & controle , Cães , Equinococose/imunologia , Equinococose/parasitologia , Equinococose/prevenção & controle , Echinococcus granulosus/genética , Expressão Gênica , Proteínas de Helminto/administração & dosagem , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Imunidade Humoral , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia , Tropomiosina/administração & dosagem , Tropomiosina/genética , Vacinas/administração & dosagem , Vacinas/genética , Vacinas/imunologia
8.
J Virol ; 91(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28615209

RESUMO

Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with chelonid herpesvirus 5 (ChHV5), which has historically been refractory to growth in tissue culture. Here we show, for the first time, de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative of active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included (i) either in vitro cultures of ChHV5-positive tumor biopsy specimens (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and (ii) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies that revealed intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegument formation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign of active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures, in which most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as a model for culture of other viruses that are resistant to replication in conventional cell culture.IMPORTANCE A major challenge in virology is the study of viruses that cannot be grown in the laboratory. One example is chelonid herpesvirus 5 (ChHV5), which is associated with fibropapillomatosis, a globally distributed, debilitating, and fatal tumor disease of endangered marine turtles. Pathological examination shows that ChHV5 is shed in skin. Here we show that ChHV5 will grow in vitro if we replicate the complex three-dimensional structure of turtle skin. Moreover, lytic virus growth requires a close interplay between fibroblasts and keratinocytes. Finally, the morphogenesis of herpesviral growth in three-dimensional cultures reveals a far richer, and likely more realistic, array of capsid morphologies than that encountered in traditional monolayer cell cultures. Our findings have applications to other viruses, including those of humans.


Assuntos
Herpesviridae/fisiologia , Queratinócitos/ultraestrutura , Pele/patologia , Tartarugas/virologia , Animais , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Citoplasma/ultraestrutura , Citoplasma/virologia , Replicação do DNA , Havaí , Herpesviridae/ultraestrutura , Infecções por Herpesviridae/veterinária , Corpos de Inclusão Intranuclear/virologia , Microscopia Eletrônica , Técnicas de Cultura de Órgãos , Papiloma/veterinária , Papiloma/virologia , Pele/virologia , Neoplasias Cutâneas/veterinária , Neoplasias Cutâneas/virologia
9.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515305

RESUMO

Adeno-associated virus 2 (AAV2) depends on the simultaneous presence of a helper virus such as herpes simplex virus 1 (HSV-1) for productive replication. At the same time, AAV2 efficiently blocks the replication of HSV-1, which would eventually limit its own replication by diminishing the helper virus reservoir. This discrepancy begs the question of how AAV2 and HSV-1 can coexist in a cell population. Here we show that in coinfected cultures, AAV2 DNA replication takes place almost exclusively in S/G2-phase cells, while HSV-1 DNA replication is restricted to G1 phase. Live microscopy revealed that not only wild-type AAV2 (wtAAV2) replication but also reporter gene expression from both single-stranded and double-stranded (self-complementary) recombinant AAV2 vectors preferentially occurs in S/G2-phase cells, suggesting that the preference for S/G2 phase is independent of the nature of the viral genome. Interestingly, however, a substantial proportion of S/G2-phase cells transduced by the double-stranded but not the single-stranded recombinant AAV2 vectors progressed through mitosis in the absence of the helper virus. We conclude that cell cycle-dependent AAV2 rep expression facilitates cell cycle-dependent AAV2 DNA replication and inhibits HSV-1 DNA replication. This may limit competition for cellular and viral helper factors and, hence, creates a biological niche for either virus to replicate.IMPORTANCE Adeno-associated virus 2 (AAV2) differs from most other viruses, as it requires not only a host cell for replication but also a helper virus such as an adenovirus or a herpesvirus. This situation inevitably leads to competition for cellular resources. AAV2 has been shown to efficiently inhibit the replication of helper viruses. Here we present a new facet of the interaction between AAV2 and one of its helper viruses, herpes simplex virus 1 (HSV-1). We observed that AAV2 rep gene expression is cell cycle dependent and gives rise to distinct time-controlled windows for HSV-1 replication. High Rep protein levels in S/G2 phase support AAV2 replication and inhibit HSV-1 replication. Conversely, low Rep protein levels in G1 phase permit HSV-1 replication but are insufficient for AAV2 replication. This allows both viruses to productively replicate in distinct sets of dividing cells.


Assuntos
Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Dependovirus/crescimento & desenvolvimento , Vírus Auxiliares/crescimento & desenvolvimento , Herpesvirus Humano 1/crescimento & desenvolvimento , Interferência Viral , Proteínas Virais/metabolismo , Replicação Viral , Linhagem Celular , Coinfecção , Expressão Gênica , Humanos , Microscopia , Cultura de Vírus
10.
Microb Cell Fact ; 17(1): 187, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477481

RESUMO

BACKGROUND: We previously engineered Bacillus subtilis to express an antigen of interest fused to TasA in a biofilm. B. subtilis has several properties such as sporulation, biofilm formation and probiotic ability that were used for the oral application of recombinant spores harboring Echinococcus granulosus paramyosin and tropomyosin immunogenic peptides that resulted in the elicitation of a specific humoral immune response in a dog model. RESULTS: In order to advance our understanding of the research in oral immunization practices using recombinant B. subtilis spores, we describe here an affordable animal model. In this study, we show clear evidence indicating that a niche is required for B. subtilis recombinant spores to colonize the densely populated mice intestinal microbiota. The reduction of intestinal microbiota with an antibiotic treatment resulted in a positive elicitation of local humoral immune response in BALB/c mice after oral application of recombinant B. subtilis spores harboring TasA fused to E. granulosus (102-207) EgTrp immunogenic peptide. Our results were supported by a lasting prevalence of spores in mice feces up to 50 days after immunization and by the presence of specific secretory IgA, isolated from feces, against E. granulosus tropomyosin. CONCLUSIONS: The reduction of mouse intestinal microbiota allowed the elicitation of a local humoral immune response in mice after oral application with spores of B. subtilis harboring immunogenic peptides against E. granulosus.


Assuntos
Antígenos de Bactérias/metabolismo , Bacillus subtilis/fisiologia , Biofilmes , Microbioma Gastrointestinal , Imunidade , Intestinos/imunologia , Intestinos/microbiologia , Animais , Imunidade Humoral , Camundongos Endogâmicos BALB C , Esporos Bacterianos
11.
Int J Mol Sci ; 18(2)2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28212334

RESUMO

Rotaviruses (RVs) are important enteric pathogens of newborn humans and animals, causing diarrhea and in rare cases death, especially in very young individuals. Rotavirus vaccines presently used are modified live vaccines that lack complete biological safety. Previous work from our laboratory suggested that vaccines based on in situ produced, non-infectious rotavirus-like particles (RVLPs) are efficient while being entirely safe. However, using either vaccine, active mucosal immunization cannot induce protective immunity in newborns due to their immature immune system. We therefore hypothesized that offspring from vaccinated dams are passively immunized either by transfer of maternal antibodies during pregnancy or by taking up antibodies from milk. Using a codon optimized polycistronic gene expression cassette packaged into herpesvirus particles, the simultaneous expression of the RV capsid genes led to the intracellular formation of RVLPs in various cell lines. Vaccinated dams developed a strong RV specific IgG antibody response determined in sera and milk of both mother and pups. Moreover, sera of naïve pups nursed by vaccinated dams also had RV specific antibodies suggesting a lactogenic transfer of antibodies. Although full protection of pups was not achieved in this mouse model, our observations are important for the development of improved vaccines against RV in humans as well as in various animal species.


Assuntos
Anticorpos Antivirais/imunologia , Vetores Genéticos/genética , Herpesvirus Humano 1/genética , Leite/imunologia , Vacinas contra Rotavirus/genética , Vacinas contra Rotavirus/imunologia , Rotavirus/imunologia , Vacinação , Animais , Anticorpos Antivirais/sangue , Especificidade de Anticorpos , Linhagem Celular Tumoral , Chlorocebus aethiops , Códon , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Gravidez , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/administração & dosagem , Transdução Genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Células Vero , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia
12.
J Virol ; 89(21): 11150-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26292324

RESUMO

Adeno-associated virus type 2 is known to inhibit replication of herpes simplex virus 1 (HSV-1). This activity has been linked to the helicase- and DNA-binding domains of the Rep68/Rep78 proteins. Here, we show that Rep68 can bind to consensus Rep-binding sites on the HSV-1 genome and that the Rep helicase activity can inhibit replication of any DNA if binding is facilitated. Therefore, we hypothesize that inhibition of HSV-1 replication involves direct binding of Rep68/Rep78 to the HSV-1 genome.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dependovirus/genética , Genoma Viral/genética , Herpesvirus Humano 1/genética , Proteínas Virais/metabolismo , Sítios de Ligação/genética , Western Blotting , Dependovirus/metabolismo , Herpesvirus Humano 1/metabolismo , Humanos
13.
BMC Vet Res ; 12(1): 147, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27449225

RESUMO

BACKGROUND: Papillomaviruses can cause proliferative skin lesions ranging from benign hyperplasia to squamous cell carcinoma (SCC). However, asymptomatic infection is also possible. Several groups have detected Felis domesticus Papillomavirus type 2 (FdPV2) DNA in association with feline Bowenoid in situ carcinoma (BISC). Therefore, a causative connection has been suggested. However, the knowledge about FdPV2 epidemiology is limited. The aim of this study was to describe the genoprevalence and seroprevalence of FdPV2 in healthy cats. For this purpose an FdPV2-specific quantitative (q)PCR assay was developed and used to analyse Cytobrush samples collected from 100 dermatologically healthy cats. Moreover, an ELISA was established to test the sera obtained from the same cats for antibodies against the major capsid protein (L1) of FdPV2. RESULTS: The genoprevalence of FdPV2 was to 98 %. Surprisingly, the quantities of viral DNA detected in some samples from the healthy cats exceeded the amounts detected in control samples from feline BISC lesions. The seroprevalence was much lower, amounting to 22 %. The concentrations of antibodies against FdPV2 were relatively low in healthy cats, whereas they were very high in control cats with BISC. CONCLUSION: These observations suggest that FdPV2 is highly prevalent, even among healthy cats. However, cats that carry it on their skin mount in most instances no antibody response. It might be hypothesized that FdPV2 is only rarely productively replicating or its replication is only rarely exposed to the immune system.


Assuntos
Doenças do Gato/virologia , Papillomaviridae/genética , Animais , Gatos , Feminino , Masculino , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , Estudos Soroepidemiológicos
14.
PLoS One ; 19(7): e0301987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995916

RESUMO

Equid alphaherpesviruses 1 (EHV-1) and 4 (EHV-4) are closely related and both endemic in horses worldwide. Both viruses replicate in the upper respiratory tract, but EHV-1 may additionally lead to abortion and equine herpesvirus myeloencephalopathy (EHM). We focused on antibody responses in horses against the receptor-binding glycoprotein D of EHV-1 (gD1), which shares a 77% amino acid identity with its counterpart in EHV-4 (gD4). Both antigens give rise to cross-reacting antibodies, including neutralizing antibodies. However, immunity against EHV-4 is not considered protective against EHM. While a diagnostic ELISA to discriminate between EHV-1 and EHV-4 infections is available based on type-specific fragments of glycoprotein G (gG1 and gG4, respectively), the type-specific antibody reaction against gD1 has not yet been sufficiently addressed. Starting from the N-terminus of gD1, we developed luciferase immunoprecipitation system (LIPS) assays, using gD1-fragments of increasing size as antigens, i.e. gD1_83 (comprising the first 83 amino acids), gD1_160, gD1_180, and gD1_402 (the full-length molecule). These assays were then used to analyse panels of horse sera from Switzerland (n = 60) and Iceland (n = 50), the latter of which is considered EHV-1 free. We detected only one true negative horse serum from Iceland, whereas all other sera in both panels were seropositive for both gG4 (ELISA) and gD1 (LIPS against gD1_402). In contrast, seropositivity against gG1 was rather rare (35% Swiss sera; 14% Icelandic sera). Therefore, a high percentage of antibodies against gD1 could be attributed to cross-reaction and due to EHV-4 infections. In contrast, the gD1_83 fragment was able to identify sera with type-specific antibodies against gD1. Interestingly, those sera stemmed almost exclusively from vaccinated horses. Although it is uncertain that the N-terminal epitopes of gD1 addressed in this communication are linked to better protection, we suggest that in future vaccine developments, type-common antigens should be avoided, while a broad range of type-specific antigens should be favored.


Assuntos
Anticorpos Antivirais , Herpesvirus Equídeo 1 , Doenças dos Cavalos , Proteínas do Envelope Viral , Animais , Cavalos/imunologia , Herpesvirus Equídeo 1/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas do Envelope Viral/imunologia , Doenças dos Cavalos/virologia , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/prevenção & controle , Herpesvirus Equídeo 4/imunologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Domínios Proteicos/imunologia
15.
J Gen Virol ; 94(Pt 6): 1365-1372, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23486670

RESUMO

Papillomaviruses appear to be species-specific pathogens, and it was suggested that each animal species might harbour its own set of papillomaviruses. However, all approaches addressing the underlying evolutionary phenomena still suffer from very limited data about animal papillomaviruses. In case of the horse for example, only three equine papillomaviruses (EcPVs) have been identified. To further address the situation in this host, suspected papillomavirus-associated lesions were tested for EcPV DNA. Four novel EcPV types were detected and their genomes entirely cloned and sequenced. They display the characteristic organization, with early (E) and late (L) regions harbouring the seven classical open reading frames divided by non-coding regions. They were named EcPVs 4, 5, 6 and 7, according to their dissimilarity to other papillomaviruses. Most L1 nucleotide identities were shared with EcPV2 in case of EcPV4 (62 %) and EcPV5 (60 %) or with EcPV3 in case of EcPV6 (70 %) and EcPV7 (71 %). Thus, EcPVs 4 and 5 may establish novel species within the genus Dyoiota, while EcPVs 6 and 7 might fit into the genus Dyorho and belong to the same species as EcPV3. They were found in genital plaques (EcPV4), aural plaques (EcPV5, EcPV6) or penile masses (EcPV7). Interestingly, PCR analysis revealed the DNA of EcPV2 and EcPV4 as well as of EcPV3 and EcPV6 together in the same tissue samples, respectively. In conclusion, the DNA of four novel EcPV types was identified and cloned. They cluster with the known types and support broad genetic EcPV diversity in at least two of the known clades. Furthermore, PCR assays also provide evidence for EcPV co-infections in horses.


Assuntos
Variação Genética , Doenças dos Cavalos/virologia , Papillomaviridae/genética , Infecções por Papillomavirus/veterinária , Animais , Cavalos , Dados de Sequência Molecular , Fases de Leitura Aberta , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/virologia , Filogenia , Proteínas Virais/genética
16.
J Virol ; 86(18): 10226-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22923791

RESUMO

Papillomaviruses are associated with benign and malignant neoplasias of the skin and mucous membranes. The sequence of a novel canine papillomavirus was determined from DNA detected in the oral cavity of a dog. The sequence of the novel virus canine papillomavirus type 13 (CPV13) shares the highest levels of similarity with the Tau papillomaviruses CPV2 and CPV7.


Assuntos
Papillomaviridae/classificação , Papillomaviridae/genética , Animais , Sequência de Bases , DNA Viral/genética , Doenças do Cão/virologia , Cães , Genoma Viral , Dados de Sequência Molecular , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/veterinária , Infecções por Papillomavirus/virologia
17.
J Virol ; 86(1): 143-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22013059

RESUMO

Adeno-associated virus type 2 (AAV2) is a human parvovirus that relies on a helper virus for efficient replication. Herpes simplex virus 1 (HSV-1) supplies helper functions and changes the environment of the cell to promote AAV2 replication. In this study, we examined the accumulation of cellular replication and repair proteins at viral replication compartments (RCs) and the influence of replicating AAV2 on HSV-1-induced DNA damage responses (DDR). We observed that the ATM kinase was activated in cells coinfected with AAV2 and HSV-1. We also found that phosphorylated ATR kinase and its cofactor ATR-interacting protein were recruited into AAV2 RCs, but ATR signaling was not activated. DNA-PKcs, another main kinase in the DDR, was degraded during HSV-1 infection in an ICP0-dependent manner, and this degradation was markedly delayed during AAV2 coinfection. Furthermore, we detected phosphorylation of DNA-PKcs during AAV2 but not HSV-1 replication. The AAV2-mediated delay in DNA-PKcs degradation affected signaling through downstream substrates. Overall, our results demonstrate that coinfection with HSV-1 and AAV2 provokes a cellular DDR which is distinct from that induced by HSV-1 alone.


Assuntos
Coinfecção/genética , Dano ao DNA , Dependovirus/fisiologia , Herpes Simples/genética , Herpesvirus Humano 1/fisiologia , Infecções por Parvoviridae/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Coinfecção/enzimologia , Coinfecção/virologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dependovirus/genética , Herpes Simples/enzimologia , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Humanos , Infecções por Parvoviridae/enzimologia , Infecções por Parvoviridae/virologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Replicação Viral
18.
Mol Ther ; 20(9): 1810-20, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22713696

RESUMO

Virus-like particles (VLPs) are promising vaccine candidates because they represent viral antigens in the authentic conformation of the virion and are therefore readily recognized by the immune system. As VLPs do not contain genetic material they are safer than attenuated virus vaccines. In this study, herpes simplex virus type 1 (HSV-1) amplicon vectors were constructed to coexpress the rotavirus (RV) structural genes VP2, VP6, and VP7 and were used as platforms to launch the production of RV-like particles (RVLPs) in vector-infected mammalian cells. Despite the observed splicing of VP6 RNA, full-length VP6 protein and RVLPs were efficiently produced. Intramuscular injection of mice with the amplicon vectors as a two-dose regimen without adjuvants resulted in RV-specific humoral immune responses and, most importantly, immunized mice were partially protected at the mucosal level from challenge with live wild-type (wt) RV. This work provides proof of principle for the application of HSV-1 amplicon vectors that mediate the efficient production of heterologous VLPs as genetic vaccines.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Herpesvirus Humano 1/imunologia , Infecções por Rotavirus/prevenção & controle , Rotavirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Antivirais/biossíntese , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Chlorocebus aethiops , Feminino , Vetores Genéticos , Células HEK293 , Herpesvirus Humano 1/genética , Humanos , Imunidade Humoral , Imunidade nas Mucosas , Imunização , Camundongos , Rotavirus/genética , Infecções por Rotavirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Células Vero , Vírion/genética , Vírion/imunologia
19.
Eur J Immunol ; 41(9): 2544-55, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21748731

RESUMO

Cross-presentation is an important mechanism to elicit both immune defenses and tolerance. Although only a few DC subsets possess the machinery required for cross-presentation, little is known about differences in cross-presenting capabilities of DCs belonging to the same subpopulation but localized in different lymphoid organs. In this study, we demonstrate that steady-state thymic CD8(+) DCs can efficiently cross-prime naïve CD8(+) T cells in the absence of costimulation. Surprisingly, cross-priming by splenic CD8(+) DCs was dependent on licensing factors such as GM-CSF. In the absence of GM-CSF, antigen-MHC-class-I complexes were detected on thymic but not on splenic CD8(+) DCs, indicating that the cross-presentation capacity of the thymic subpopulation was higher. The observed cross-priming differences between thymic and splenic CD8(+) DCs did not correlate with differential antigen capture or costimulatory molecules found on the surface of DCs. Moreover, we did not detect overall impairment of antigen presentation, as peptide-loaded splenic CD8(+) DCs were able to induce CD8(+) T-cell proliferation. The observation that thymic CD8(+) DCs are more efficient than splenic CD8(+) DCs in T-cell cross-priming in the absence of licensing factors indicates that the requirements for efficient antigen presentation differ between these cells.


Assuntos
Apresentação Cruzada , Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Linfócitos T/metabolismo , Animais , Antígenos CD8/biossíntese , Proliferação de Células , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Tolerância Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Baço/citologia , Linfócitos T/citologia , Linfócitos T/imunologia , Timo/citologia
20.
J Virol ; 85(14): 6941-54, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21593175

RESUMO

Alcelaphine herpesvirus 1 (AlHV-1), carried by wildebeest asymptomatically, causes malignant catarrhal fever (WD-MCF) when cross-species transmitted to a variety of susceptible species of the Artiodactyla order. Experimentally, WD-MCF can be reproduced in rabbits. WD-MCF is described as a combination of lymphoproliferation and degenerative lesions in virtually all organs and is caused by unknown mechanisms. Recently, we demonstrated that WD-MCF is associated with the proliferation of CD8(+) cells supporting a latent type of infection in lymphoid tissues. Here, we investigated the macroscopic distribution of AlHV-1 infection using ex vivo bioluminescence imaging in rabbit to determine whether it correlates with the distribution of lesions in lymphoid and nonlymphoid organs. To reach that goal, a recombinant AlHV-1 strain was produced by insertion of a luciferase expression cassette (luc) in an intergenic region. In vitro, the reconstituted AlHV-1 luc(+) strain replicated comparably to the parental strain, and luciferase activity was detected by bioluminescence imaging. In vivo, rabbits infected with the AlHV-1 luc(+) strain developed WD-MCF comparably to rabbits infected with the parental wild-type strain, with hyperthermia and increases of both CD8(+) T cell frequencies and viral genomic charge over time in peripheral blood mononuclear cells and in lymph nodes at time of euthanasia. Bioluminescent imaging revealed that AlHV-1 infection could be detected ex vivo in lymphoid organs but also in lung, liver, and kidney during WD-MCF, demonstrating that AlHV-1 infection is prevalent in tissue lesions. Finally, we show that the infiltrating mononuclear leukocytes in nonlymphoid organs are mainly CD8(+) T cells and that latency is predominant during WD-MCF.


Assuntos
Infecções por Herpesviridae/diagnóstico , Febre Catarral Maligna/diagnóstico , Animais , Sequência de Bases , Southern Blotting , Linfócitos T CD8-Positivos/imunologia , Bovinos , Linhagem Celular , Primers do DNA , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Genes Reporter , Luminescência , Reação em Cadeia da Polimerase , Coelhos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa