Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Eur Biophys J ; 49(8): 791-798, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32844285

RESUMO

The 6-deoxy-6-aminocelluloses-or "aminocelluloses"-are a class of synthetic natural cellulose derivatives which are mostly aqueous soluble and have excellent film-forming properties. Recent studies have connected these properties at the molecular level with protein-like self-associative behaviour for a range of aminocelluloses including a 6-deoxy-6-(ω-aminoethyl) aminocellulose AEA-1 with the association being a two-stage process-a reversible oligomerisation followed by further (semi-reversible) aggregation into larger structures. Here, we synthesise and compare a new 6-deoxy-6-(ω-aminoethyl) aminocellulose AEA-1' with different degree of substitution with one with further alkyl derivatisation, namely 6-deoxy-6-(ω-hydroxyethyl) aminocellulose HEA-1'. As with AEA-1, sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge still show a two-stage process for both AEA-1' and HEA-1', with the latter giving higher molar masses. The consequences of these properties for use as consolidants for archaeological wood are considered.


Assuntos
Arqueologia , Celulose/química , Madeira/química , Relação Estrutura-Atividade , Ultracentrifugação
2.
Eur Biophys J ; 49(8): 799-808, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33185715

RESUMO

Aroma compounds are diverse low molecular weight organic molecules responsible for the flavour of food, medicines or cosmetics. Natural and artificial aroma compounds are manufactured and used by the industry to enhance the flavour and fragrance of products. While the low concentrations of aroma compounds present in food may leave no effect on the structural integrity of the mucosa, the effect of concentrated aroma volatiles is not well understood. At high concentrations, like those found in some flavoured products such as e-cigarettes, some aroma compounds are suggested to elicit a certain degree of change in the mucin glycoprotein network, depending on their functional group. These effects are particularly associated with carbonyl compounds such as aldehydes and ketones, but also phenols which may interact with mucin and other glycoproteins through other interaction mechanisms. This study demonstrates the formation of such interactions in vitro through the use of molecular hydrodynamics. Sedimentation velocity studies reveal that the strength of the carbonyl compound interaction is influenced by compound hydrophobicity, in which the more reactive short chain compounds show the largest increase in mucin-aroma sedimentation coefficients. By contrast, the presence of groups that increases the steric hindrance of the carbonyl group, such as ketones, produced a milder effect. The interaction effects were further demonstrated for hexanal using size exclusion chromatography light scattering (SEC-MALS) and intrinsic viscosity. In addition, phenolic aroma compounds were identified to reduce the sedimentation coefficient of mucin, which is consistent with interactions in the non-glycosylated mucin region.


Assuntos
Hidrocarbonetos Aromáticos/farmacologia , Hidrodinâmica , Mucinas/metabolismo , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Mucinas/química , Fenóis/farmacologia
3.
Food Hydrocoll ; 101: 105446, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32255886

RESUMO

Scleroglucan, a neutral ß(1-3) glucan with ß(1-6) glucan branches every third residue, is being considered as an alternative rod-like, shear thinning high molecular weight ß-glucan based polysaccharide to xanthan gum for the management of patients with oropharyngeal dysphagia. It is therefore important to understand more fully its hydrodynamic properties in solution, in particular heterogeneity, molecular weight distribution and its behaviour in the presence of mucin glycoproteins. A commercially purified scleroglucan preparation produced by fermentation of the filamentous fungus Sclerotium rolfsii was analysed in deionised distilled water with 0.02% added azide. Sedimentation velocity in the analytical ultracentrifuge showed the scleroglucan preparation to be unimodal at concentrations >0.75 mg/ml which resolved into two components at lower concentration and with partial reversibility between the components. Sedimentation coefficient versus concentration plots showed significant hydrodynamic non-ideality. Self-association behaviour was confirmed by sedimentation equilibrium experiments with molecular weights between ~3 × 106 g/mol to ~5 × 106 g/mol after correcting for thermodynamic non-ideality. SEC-MALS-viscosity experiments showed a transition between a rod-shape at lower molar masses to a more flexible structure at higher masses consistent with previous observations. Sedimentation velocity experiments also showed no evidence for potentially problematic interactions with submaxillary mucin.

4.
Eur Biophys J ; 47(7): 809-813, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30159596

RESUMO

In establishing the sources of data variability within sedimentation velocity analysis in the analytical ultracentrifuge and their relative importance, recent studies have demonstrated that alignment of the sample cells to the centre of rotation is the most significant contributing factor to overall variability, particularly for the characterisation of low levels of protein aggregation. Accurate mechanical and optical alignment tools have been recently designed. In this study, we (1) confirm the effect of misalignment observed by others on the estimated amounts of bovine serum albumin (BSA) monomer and dimer, and the sedimentation coefficient value for the BSA dimer; and (2) demonstrate the high performance of a mechanical alignment tool and the usefulness of a simple and complementary enhanced manual alignment protocol which should be useful for situations where these tools are not available.


Assuntos
Fenômenos Mecânicos , Fenômenos Ópticos , Ultracentrifugação/métodos , Animais , Bovinos , Multimerização Proteica , Estrutura Quaternária de Proteína , Soroalbumina Bovina/análise , Soroalbumina Bovina/química
5.
Eur Biophys J ; 47(7): 769-775, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29550902

RESUMO

The heterogeneity and molecular weight of a chitosan of low molecular weight (molar mass) and low degree of acetylation (0.1) for potential use as a consolidant for decayed archaeological wood were examined by sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge before and after depolymerisation. Sedimentation velocity before depolymerisation revealed a uniform distribution of sedimentation coefficient with little concentration dependence. SEDFIT-MSTAR analysis revealed a weight average molecular weight Mw of (14.2 ± 1.2) kDa, and polydispersity index of ~ 1.2. Further analysis using MULTISIG revealed a distribution of material between 2 and 20 kDa and consistent with the weight average Mw. Controlled depolymerisation using hydrogen peroxide and ultra-violet radiation in an acetic acid medium reduced this to (4.9 ± 0.7) kDa, with a similar polydispersity. The depolymerised material appears to be within the range that has been predicted to fully penetrate into archaeological wood. The consequences for this finding and the use of the analytical ultracentrifuge in wood conservation strategies are considered.


Assuntos
Arqueologia , Quitosana/análise , Quitosana/química , Polimerização , Quitosana/isolamento & purificação , Peso Molecular , Ultracentrifugação
6.
Eur Biophys J ; 46(3): 235-245, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27444285

RESUMO

Polysaccharides, the most abundant biopolymers, are required for a host of activities in lower organisms, animals, and plants. Their solution characterization is challenging due to their complex shape, heterogeneity, and size. Here, recently developed data analysis approaches were applied for traditional sedimentation equilibrium and velocity methods in order to investigate the molar mass distribution(s) of a subtype of polysaccharide, namely, mannans from four Candida spp. The molecular weight distributions of these mannans were studied using two recently developed equilibrium approaches: SEDFIT-MSTAR and MULTISIG, resulting in corroboratory distribution profiles. Additionally, sedimentation velocity data for all four mannans, analyzed using ls-g*(s) and Extended Fujita approaches, suggest that two of the fungal mannans (FM-1 and FM-3) have a unimodal distribution of molecular species whereas two others (FM-2 and FM-4) displayed bi-modal and broad distributions, respectively: this demonstrates considerable molecular heterogeneity in these polysaccharides, consistent with previous observations of mannans and polysaccharides in general. These methods not only have applications for the characterization of mannans but for other biopolymers such as polysaccharides, DNA, and proteins (including intrinsically disordered proteins).


Assuntos
Candida/química , Mananas/isolamento & purificação , Ultracentrifugação/métodos , Mananas/análise , Mananas/química , Peso Molecular , Soluções
7.
Biopolymers ; 105(9): 618-25, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26899968

RESUMO

Under investigation are the structural properties of gum arabic, an industrially important biopolymer for use as a stabilizer or in drug delivery, using Analytical Ultracentrifugation-a well-established, matrix-free probe for macromolecular size and shape. These results are combined with chromatographically-coupled methods (multi-angle light scattering, differential press imbalance viscometry) to provide a global analysis of its structure in varying ionic strength conditions. This analysis indicates that gum Arabic may have a compact, elliptical structure in solution, the significance of which for biotechnological use is indicated. This modelling method can be applied to other biopolymers and synthetic polymers. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 618-625, 2016.


Assuntos
Goma Arábica/química , Ultracentrifugação
8.
Eur Biophys J ; 45(1): 45-54, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26596272

RESUMO

Mucins are the primary macromolecular component of mucus--nature's natural lubricant--although they are poorly characterised heterogeneous substances. Recent advances in hydrodynamic methodology now offer the opportunity for gaining a better understanding of their solution properties. In this study a combination of such methods was used to provide increased understanding of a preparation of porcine intestinal mucin (PIM), MUC2 mucin, in terms of both heterogeneity and quantification of conformational flexibility. The new sedimentation equilibrium algorithm SEDFIT-MSTAR is applied to yield a weight average (over the whole distribution) molar mass of 7.1 × 10(6) g mol(-1), in complete agreement with size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS), which yielded a value of 7.2 × 10(6) g mol(-1). Sedimentation velocity profiles show mucin to be very polydisperse, with a broad molar mass distribution obtained using the Extended Fujita algorithm, consistent with the elution profiles from SEC-MALS. On-line differential pressure viscometry coupled to the SEC-MALS was used to obtain the intrinsic viscosity [η] as a function of molar mass. These data combined with sedimentation coefficient data into the global conformation algorithm HYDFIT show that PIM has a flexible linear structure, with persistence length L p ~10 nm and mass per unit length, M L ~2380 g mol(-1) nm(-1), consistent with a Wales-van Holde ratio of ~1.2 obtained from the concentration dependence of the sedimentation coefficient.


Assuntos
Algoritmos , Hidrodinâmica , Mucina-2/química , Animais , Fracionamento por Campo e Fluxo/métodos , Mucosa Intestinal/metabolismo , Soluções , Suínos
9.
Crit Rev Food Sci Nutr ; 54(10): 1322-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24564589

RESUMO

In the contemporary society, diabetes mellitus is considered as a common, growing, serious, costly, and potentially preventable public health problem. It is forecasted that in 2030, the number of people with diabetes will go up from 117 million in 2000 to 366 million in 2030. The prevalence of diabetes will place a huge burden on health and financial structures of countries, and these will impact on individuals, as well as families and nations. Polysaccharides, para-aminobenzoic acid, fixed oils, sterol, proteins, and peptides are biologically active ingredients, which are found in pumpkins. The chemicals within pumpkins such as the fruit pulp, oil from ungerminated seeds, and protein from germinated seeds have hypoglycemic properties. Preliminary investigation showed that pumpkin seeds, and the macromolecules, therein, such as Trigonelline (TRG), Nicotinic acid (NA), and D-chiro-inositol (DCI), possess hypoglycemic properties and could assist in maintaining glycemic control.


Assuntos
Cucurbita/química , Hipoglicemiantes/farmacologia , Sementes/química , Alcaloides/química , Alcaloides/farmacologia , Animais , Glicemia/metabolismo , Diabetes Mellitus/tratamento farmacológico , Humanos , Inositol/química , Inositol/farmacologia , Niacina/química , Niacina/farmacologia
10.
Analyst ; 139(1): 79-92, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24244936

RESUMO

Sedimentation equilibrium (analytical ultracentrifugation) is one of the most inherently suitable methods for the determination of average molecular weights and molecular weight distributions of polymers, because of its absolute basis (no conformation assumptions) and inherent fractionation ability (without the need for columns or membranes and associated assumptions over inertness). With modern instrumentation it is also possible to run up to 21 samples simultaneously in a single run. Its application has been severely hampered because of difficulties in terms of baseline determination (incorporating estimation of the concentration at the air/solution meniscus) and complexity of the analysis procedures. We describe a new method for baseline determination based on a smart-smoothing principle and built into the highly popular platform SEDFIT for the analysis of the sedimentation behavior of natural and synthetic polymer materials. The SEDFIT-MSTAR procedure - which takes only a few minutes to perform - is tested with four synthetic data sets (including a significantly non-ideal system), a naturally occurring protein (human IgG1) and two naturally occurring carbohydrate polymers (pullulan and λ-carrageenan) in terms of (i) weight average molecular weight for the whole distribution of species in the sample (ii) the variation in "point" average molecular weight with local concentration in the ultracentrifuge cell and (iii) molecular weight distribution.


Assuntos
Fracionamento por Campo e Fluxo/métodos , Polímeros/análise , Polímeros/química , Animais , Humanos , Camundongos , Peso Molecular , Ultracentrifugação/métodos
11.
Biotechnol Genet Eng Rev ; 30(1-2): 142-57, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25686159

RESUMO

This short review considers the range of modern techniques for the hydrodynamic characterisation of macromolecules - particularly large glycosylated systems used in the food, biopharma and healthcare industries. The range or polydispersity of molecular weights and conformations presents special challenges compared to proteins. The review is aimed, without going into any great theoretical or methodological depth, to help the Industrial Biotechnologist choose the appropriate methodology or combination of methodologies for providing the detail he/she needs for particular applications.


Assuntos
Hidrodinâmica , Substâncias Macromoleculares/química , Microquímica/métodos , Modelos Químicos , Nefelometria e Turbidimetria/métodos , Refratometria/métodos , Ultracentrifugação/métodos , Simulação por Computador , Viscosidade
13.
Eur Biophys J ; 42(10): 777-86, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23989852

RESUMO

MultiSig is a newly developed mode of analysis of sedimentation equilibrium (SE) experiments in the analytical ultracentrifuge, having the capability of taking advantage of the remarkable precision (~0.1% of signal) of the principal optical (fringe) system employed, thus supplanting existing methods of analysis through reducing the 'noise' level of certain important parameter estimates by up to orders of magnitude. Long-known limitations of the SE method, arising from lack of knowledge of the true fringe number in fringe optics and from the use of unstable numerical algorithms such as numerical differentiation, have been transcended. An approach to data analysis, akin to 'spatial filtering', has been developed, and shown by both simulation and practical application to be a powerful aid to the precision with which near-monodisperse systems can be analysed, potentially yielding information on protein-solvent interaction. For oligo- and poly-disperse systems the information returned includes precise average mass distributions over both cell radial and concentration ranges and mass-frequency histograms at fixed radial positions. The application of MultiSig analysis to various complex heterogenous systems and potentially multiply-interacting carbohydrate oligomers is described.


Assuntos
Polissacarídeos/química , Ultracentrifugação/métodos , Algoritmos , Peso Molecular , Solventes
14.
Biotechnol Genet Eng Rev ; 28: 33-45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22616480

RESUMO

Inulin is a polysaccharide with an extensive range of therapeutic uses such as a vehicle in drug delivery vehicle, as a diagnostic/analytical tool or as a dietary fibre with additional health benefits. In the main, much research has focussed on inulin as a drug delivery carrier for colon-targeted drug delivery. The justification for this is its potential to survive the stomach's acidic environment. This unique stability and strength is utilized in many ways to deliver drugs safely to colon, where they can be easily absorbed through the gut epithelium into the blood. Inulin based hydrodynamic research will be useful to discover the potential of inulin.


Assuntos
Sistemas de Liberação de Medicamentos , Inulina/administração & dosagem , Inulina/química , Colo/metabolismo , Fibras na Dieta/administração & dosagem , Fibras na Dieta/metabolismo , Vias de Administração de Medicamentos , Humanos , Inulina/farmacocinética
15.
Sci Rep ; 11(1): 1737, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462295

RESUMO

This study concerns glulisine, a rapid-acting insulin analogue that plays a fundamental role in diabetes management. We have applied a combination of methods namely X-ray crystallography, and biophysical characterisation to provide a detailed insight into the structure and function of glulisine. X-ray data provided structural information to a resolution of 1.26 Å. Crystals belonged to the H3 space group with hexagonal (centred trigonal) cell dimensions a = b = 82.44 and c = 33.65 Å with two molecules in the asymmetric unit. A unique position of D21Glu, not present in other fast-acting analogues, pointing inwards rather than to the outside surface was observed. This reduces interactions with neighbouring molecules thereby increasing preference of the dimer form. Sedimentation velocity/equilibrium studies revealed a trinary system of dimers and hexamers/dihexamers in dynamic equilibrium. This new information may lead to better understanding of the pharmacokinetic and pharmacodynamic behaviour of glulisine which might aid in improving formulation regarding its fast-acting role and reducing side effects of this drug.


Assuntos
Hipoglicemiantes/química , Insulina/análogos & derivados , Fenômenos Biofísicos , Cristalografia por Raios X/métodos , Humanos , Hipoglicemiantes/análise , Insulina/análise , Insulina/química , Multimerização Proteica , Elementos Estruturais de Proteínas , Relação Estrutura-Atividade
16.
Eur Biophys J ; 39(2): 255-61, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19669133

RESUMO

A study of the heterogeneity and conformation in solution [in 70% (v/v) aq. ethanol] of gliadin proteins from wheat was undertaken based upon sedimentation velocity in the analytical ultracentrifuge, analysis of the distribution coefficients and ellipsoidal axial ratios assuming quasi-rigid particles, allowing for a range of plausible time-averaged hydration values. All classical fractions (alpha, gamma, omega(slow), omega(fast)) show three clearly resolved components. Based on the weight-average sedimentation coefficient for each fraction and a weight-average molecular weight from sedimentation equilibrium and/or cDNA sequence analysis, all the proteins are extended molecules with axial ratios ranging from ~10 to 30 with alpha appearing the most extended and gamma the least.


Assuntos
Gliadina/química , Gliadina/genética , Algoritmos , Heterogeneidade Genética , Peso Molecular , Movimento (Física) , Conformação Proteica , Análise de Sequência de DNA , Fatores de Tempo , Triticum , Ultracentrifugação , Água/química
17.
Polymers (Basel) ; 12(2)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050432

RESUMO

Protein polysaccharide complexes have been widely studied for multiple industrial applications and are popular due to their biocompatibility. Insulin degludec, an analogue of human insulin, exists as di-hexamer in pharmaceutical formulations and has the potential to form long multi-hexamers in physiological environment, which dissociate into monomers to bind with receptors on the cell membrane. This study involved complexation of two negatively charged bio-polymers xanthan and alginate with clinically-relevant insulin degludec (PIC). The polymeric complexations and interactions were investigated using biophysical methods. Intrinsic viscosity [η] and particle size distribution (PSD) of PIC increased significantly with an increase in temperature, contrary to the individual components indicating possible interactions. [η] trend was X > XA > PIC > A > IDeg. PSD trend was X>A>IDeg>XA>PIC. Zeta (ζ)- potential (with general trend of IDeg < A < XA < X ≈ PIC) revealed stable interaction at lower temperature which gradually changed with an increase in temperature. Likewise, sedimentation velocity indicated stable complexation at lower temperature. With an increase in time and temperature, changes in the number of peaks and area under curve were observed for PIC. Conclusively, stable complexation occurred among the three polymers at 4 °C and 18 °C and the complex dissociated at 37 °C. Therefore, the complex has the potential to be used as a drug delivery vehicle.

18.
Polymers (Basel) ; 12(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722155

RESUMO

Cucurbits are plants that have been used frequently as functional foods. This study includes the extraction, isolation, and characterisation of the mesocarp polysaccharide of Cucurbita moschata. The polysaccharide component was purified by gel filtration into three fractions (NJBTF1, NJBTF2, and NJBTF3) of different molecular weights. Characterisation includes the hydrodynamic properties, identification of monosaccharide composition, and bioactivity. Sedimentation velocity also indicated the presence of small amounts of additional discrete higher molecular weight components even after fractionation. Sedimentation equilibrium revealed respective weight average molecular weights of 90, 31, and 19 kDa, with the higher fractions (NJBTF1 and NJBTF2) indicating a tendency to self-associate. Based on the limited amount of data (combinations of 3 sets of viscosity and sedimentation data corresponding to the 3 fractions), HYDFIT indicates an extended, semi-flexible coil conformation. Of all the fractions obtained, NJBTF1 showed the highest bioactivity. All fractions contained galacturonic acid and variable amounts of neutral sugars. To probe further, the extent of glycosidic linkages in NJBTF1 was estimated using gas chromatography-mass spectrometry (GCMS), yielding a high galacturonic acid content (for pectin polysaccharide) and the presence of fructans-the first evidence of fructans (levan) in the mesocarp. Our understanding of the size and structural flexibility together with the high bioactivity suggests that the polysaccharide obtained from C. moschata has the potential to be developed into a therapeutic agent.

19.
Eur J Pharm Biopharm ; 152: 340-347, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32446962

RESUMO

PURPOSE: Insulin, in typical use, undergoes multiple changes in temperature; from refrigerator, to room temperature, to body temperature. Although long-term storage temperature has been well-studied, the short term changes to insulin are yet to be determined. Insulin detemir (IDet) is a clinically available, slow-acting, synthetic analogue characterised by the conjugation of a C14 fatty acid. The function of this modification is to cause the insulin to form multi-hexameric species, thus retarding the pharmacokinetic rate of action. In this investigation, the temperature dependence properties of this synthetic analogue is probed, as well as expiration. METHODS: Dynamic light scattering (DLS) and viscometry were employed to assess the effect of temperature upon IDet. Mass spectrometry was also used to probe the impact of shelf-life and the presence of certain excipients. RESULTS: IDet was compared with eight other insulins, including human recombinant, three fast-acting analogues and two other slow-acting analogues. Of all nine insulins, IDet was the only analogue to show temperature dependent behaviour, between 20 °C and 37 °C, when probed with non-invasive backscatter dynamic light scattering. Upon further investigation, IDet observed significant changes in size related to temperature, direction of temperature (heated/cooled) and expiration with cross-correlation observed amongst all 4 parameters. CONCLUSIONS: These findings are critical to our understanding of the behaviour of this particular clinically relevant drug, as it will allow the development of future generations of peptide-based therapies with greater clinical efficacy.


Assuntos
Insulina Detemir/química , Armazenamento de Medicamentos , Excipientes/química , Hipoglicemiantes/química , Temperatura
20.
Sci Rep ; 10(1): 960, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969624

RESUMO

Vancomycin, a branched tricyclic glycosylated peptide antibiotic, is a last-line defence against serious infections caused by staphylococci, enterococci and other Gram-positive bacteria. Orally-administered vancomycin is the drug of choice to treat pseudomembranous enterocolitis in the gastrointestinal tract. However, the risk of vancomycin-resistant enterococcal infection or colonization is significantly associated with oral vancomycin. Using the powerful matrix-free assay of co-sedimentation analytical ultracentrifugation, reinforced by dynamic light scattering and environmental scanning electron microscopy, and with porcine mucin as the model mucin system, this is the first study to demonstrate strong interactions between vancomycin and gastric and intestinal mucins, resulting in very large aggregates and depletion of macromolecular mucin and occurring at concentrations relevant to oral dosing. In the case of another mucin which has a much lower degree of glycosylation (~60%) - bovine submaxillary mucin - a weaker but still demonstrable interaction is observed. Our demonstration - for the first time - of complexation/depletion interactions for model mucin systems with vancomycin provides the basis for further study on the implications of complexation on glycopeptide transit in humans, antibiotic bioavailability for target inhibition, in situ generation of resistance and future development strategies for absorption of the antibiotic across the mucus barrier.


Assuntos
Antibacterianos/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Mucinas/metabolismo , Agregados Proteicos/efeitos dos fármacos , Vancomicina/farmacologia , Animais , Bovinos , Trato Gastrointestinal/metabolismo , Ligação Proteica/efeitos dos fármacos , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa